【HMM和CRF的异同】

相同点

1.都是图模型
2.都是对隐藏状态和观测状态建模

不同点

1.HMM是有向图,动态贝叶斯网络,生成模型,对隐藏状态序列和观测序列的联合概率分布建模;CRF是无向图,马尔科夫网络,是判别模型,对隐藏状态序列和观测序列的条件概率分布建模。
2.CRF没有那么强烈的独立性假设,可以充分利用上下文,引入特征函数,特征设计灵活。
3.HMM可以看作CRF的一种特殊情况,HMM可以完成任务,CRF也可以完成,而且CRF还可以定义丰富的特征。
4.CRF不存在标注偏置问题label bias ,HMM存在label bias.

HMM的 缺点:

1.HMM只依赖状态和它对应的观测序列,其实序列标注不仅和单词有关,还和单词上下文,位置、词性等都有关
2.HMM的目标函数和预测目标函数不一致,一个是联合概率,一个是条件概率

CRF的缺点:

尽管CRF引入了特征函数,被大量用于序列标注任务,但是特征设计的好坏直接影响模型学习的好坏,也就是说需要设计非常好的特征才行,特征设计过程时间长。其次训练代价大,复杂度高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值