线性回归

这篇博客深入探讨了线性回归的概念,包括一元线性回归和多元线性回归。通过最小二乘法解释了如何确定模型参数w和b,以使误差(均方误差)最小化。此外,还提到了梯度下降法作为求解线性回归参数的另一种迭代方法,并简要介绍了似然函数在统计推断中的作用。
摘要由CSDN通过智能技术生成

一、理论

    线性回归包括一元线性回归和多元线性回归,一元的是只有一个x和一个y。对于只有一个自变量x和一个因变量y的数据集,我们假设(x,y)之间的关系可以用


进行映射,把求解这个函数的过程称为线性回归求解。


二、线性回归

一元线性回归其实就是去找到一条直线,这条直线能以最小的误差(Loss)来拟合数据。 


1、线性回归试图学得:



    2、如何确定w和b?

    关键在于衡量f(x)和y之间的差别,就是使得误差最小。均方误差(亦称平方损失)来衡量误差,即



    均方误差对应了常用的欧几里得距离,简称“欧氏距离”。基于均方误差最小化来进行模型求解的方法称为“最小二乘法”

在线性回归中,最小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值