VIO单目评测算法:A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots

本文对比了不同单目视觉惯性测距(VIO)算法在飞行机器人上的性能,包括MSCKF、OKVIS、ROVIO、VINS-Mono、SVO-MSF和SVO-GTSAM。VINS-Mono在考虑回环检测时精度最高,但资源消耗大。硬件方面,Intel NUC提供最佳性能,适合VINS-Mono,而Up Board和ODROID则需根据算法需求和资源限制进行选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots

飞行器单目VIO算法测评

算法方面总结:

MSCKF算法
优点:成功完成了所有序列,不受硬件平台影响,鲁棒性高。
缺点:太古老不考虑。新型算法以同样资源消耗获取更高的精度。
OKVIS:
优点:全平台保持精确,综合精确度与成功率仅次于VINS-Mono。
缺点:运算量大,帧更新率低,低配置平台失败率高,尤其在ODROID上。对运算能力敏感。
ROVIO
优点:精确度高,占用资源量稳定且固定。
缺点:对CPU主频敏感,无法在Up Board上运行。
VINS-Mono:
优点:考虑回环检测时最为精确,不考虑回环检测时通常最为精确。
缺点:资源使用率高(指使用回环检测时),回环检测无法在低运算能力硬件,如ODROID上运行。
SVO-MSF:
优点:效率最高
缺点:不适合。需要手动初始化,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值