【LeetCode - 296】最佳的碰头地点

1、题目描述

在这里插入图片描述

2、解题思路

  题意计算距离的公式可以看出,一个点的横坐标和纵坐标计算是相互独立的。

  因此我们可以把二维问题拆成两个一维的问题。

  假设一个一维数组如下:
在这里插入图片描述
  我们要找出一个点,使得所有的 1 到该点的距离之和最小。

  其实我们一眼可以看出,这个最优碰头点是索引 6 的地方。

  索引 6 所在的 1 不用说,它走到 6 的距离是 0;而索引 0 和索引 9 的 1 到达索引 6 位置的距离为 9-0 = 9。
在这里插入图片描述
  而索引 5 和索引 8 到达索引 6 的距离为 8-5 = 3。总距离为 9 + 3 = 12。
在这里插入图片描述
  那为什么索引 6 就是最优的碰头点呢?我们下面来逐一分析:

  首先,无论碰头点在何处,索引 0 和索引 9 到达这个碰头点走的距离之和肯定是 9.
在这里插入图片描述
  如果碰头点在索引 6 的左侧,那么索引 5、6、8 到碰头点的距离之和肯定大于 8-5:
在这里插入图片描述
  如果碰头点在所有 6 的右侧,那么索引 5、6、8 到碰头点的距离之和肯定大于 8-5;
在这里插入图片描述
  因此,位置 6 就是最优碰头点。

  这个位置的索引恰好是所有 1 所在索引的中位数。

  比如上面的 1 所在索引分别是 {0,5,6,8,9} ,中位数为 6。

  由于题目是二维问题,且距离计算时,横纵坐标的计算是相互独立的,因此把问题拆分成两个一维问题之和。

  1、找出所有 1 所在的行(列)索引;

  2、最优点肯定为中位数的地方(如果 1 的个数是偶数个,那么最优点在中间的两个 1 其中任意一个);

  3、分别计算行距离和纵距离,相加即可。

3、解题代码

class Solution {
    public int minTotalDistance(int[][] grid) {
        List<Integer> rows = collectRows(grid);
        List<Integer> cols = collectCols(grid);
        return minDistance1D(rows) + minDistance1D(cols);
    }

    private int minDistance1D(List<Integer> points) {
        int distance = 0;
        int i = 0;
        int j = points.size() - 1;
        while (i < j) {
            distance += points.get(j) - points.get(i);
            i++;
            j--;
        }
        return distance;
    }

    private List<Integer> collectRows(int[][] grid) {
        List<Integer> rows = new ArrayList<>();
        for (int row = 0; row < grid.length; row++) {
            for (int col = 0; col < grid[0].length; col++) {
                if (grid[row][col] == 1) {
                    rows.add(row);
                }
            }
        }
        return rows;
    }

    private List<Integer> collectCols(int[][] grid) {
        List<Integer> cols = new ArrayList<>();
        for (int col = 0; col < grid[0].length; col++) {
            for (int row = 0; row < grid.length; row++) {
                if (grid[row][col] == 1) {
                    cols.add(col);
                }
            }
        }
        return cols;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值