贝叶斯公式回顾

贝叶斯公式

P ( A j ∣ B ) = P ( A j , B ) P ( B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A_j|B)=\frac{P(A_j,B)} {P(B)} = \frac{P(A_j)P(B|A_j)} {\sum\limits_{i=1}^{n}P(A_i)P(B|A_i)} P(AjB)=P(B)P(Aj,B)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)
其中 P ( A j , B ) = P ( A j B ) = P ( A j ) P ( B ∣ A j ) P(A_j,B) = P(A_jB) = P(A_j)P(B|A_j) P(Aj,B)=P(AjB)=P(Aj)P(BAj)是利用乘法公式,就是贝叶斯的逆用比较好理解,而 P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum\limits_{i=1}^{n}P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)是利用全概率公式得出,所以下面先介绍下全概率公式

全概率公式

P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) = \sum\limits_{i=1}^{n}P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)

推导

P ( A ) = P ( A Ω ) = P ( A ( B 1 ∪ B 2 . . . ∪ B n ) ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) = P(A\Omega)=P(A(B_1\cup B_2 ... \cup B_n)) = \sum\limits_{i=1}^{n}P(AB_i) = \sum\limits_{i=1}^{n}P(B_i)P(A|B_i) P(A)=P(AΩ)=P(A(B1B2...Bn))=i=1nP(ABi)=i=1nP(Bi)P(ABi)

全概率公式应用

血型1(O)2(A)3(B)4(AB)
比例abcd

求随机2人,甲能给乙输血概率:
A A A = {符合命题}, B i B_i Bi={甲为i型血} i= 1,2,3,4
P ( A ∣ B 1 ) = 1 P(A|B_1)=1 P(AB1)=1
P ( A ∣ B 2 ) = b + d P(A|B_2)=b+d P(AB2)=b+d
P ( A ∣ B 3 ) = c + d P(A|B_3)=c+d P(AB3)=c+d
P ( A ∣ B 4 ) = d P(A|B_4)=d P(AB4)=d
P ( A ) = ∑ i = 1 4 P ( B i ) P ( A ∣ B i ) = a + b ( b + d ) + c ( c + d ) + d ( d ) P(A)= \sum\limits_{i=1}^{4}P(B_i)P(A|B_i) = a + b(b+d) + c(c+d) + d(d) P(A)=i=14P(Bi)P(ABi)=a+b(b+d)+c(c+d)+d(d)
tip:为什么用全概率求解,这里的理解是甲能给乙输血首先要确定甲血型,所以分为两阶段。分解第一阶段为 Ω = ∑ i n B i \Omega=\sum\limits_i^nB_i Ω=inBi,再求第二阶段 A A A,应用全概率公式求 P ( A ) P(A) P(A)

贝叶斯公式应用

甲袋中有 3 个白球 2 个黑球,乙袋中有 4 个白球 4 个黑球,先从甲袋中任取 2 球放
人乙袋,再从乙袋中任取一球,求取出的球是白球的概率 p;如果已知从乙袋中取出的
球是白球,求从甲袋中取出的球是 1 白 1 黑的概率 q.

A A A={从乙中取出白球}
B i B_i Bi={从甲中取出的有i个白球} i=0,i,2
分析下:
要求 q = P ( B 1 ∣ A ) q=P(B_1|A) q=P(B1A),先使用贝叶斯公式
P ( B 1 ∣ A ) = P ( B 1 , A ) P ( A ) P(B_1|A)=\frac{P(B_1,A)} {P(A)} P(B1A)=P(A)P(B1,A)

其中 P ( B 1 , A ) P(B_1,A) P(B1,A) P ( A ) P(A) P(A)未知,在利用乘法和全概率公式
替换
P ( B 1 , A ) P ( A ) = P ( B 1 ) P ( A ∣ B 1 ) ∑ i = 0 2 P ( B i ) P ( A ∣ B i ) \frac{P(B_1,A)} {P(A)}= \frac{P(B_1)P(A|B_1)} {\sum\limits_{i=0}^{2}P(B_i)P(A|B_i)} P(A)P(B1,A)=i=02P(Bi)P(ABi)P(B1)P(AB1)
P ( B i ) P(B_i) P(Bi) P ( A ∣ B i ) P(A|B_i) P(ABi)都比较好求,其中 P ( B i ) P(B_i) P(Bi)需要使用古典概型求,比如 P ( B 1 ) = C 3 1 C 2 1 C 5 2 = 1 10 P(B_1) = \frac{C_3^1C_2^1}{C_5^2}=\frac{1}{10} P(B1)=C52C31C21=101 P ( A ∣ B 1 ) = 5 10 P(A|B_1)=\frac{5}{10} P(AB1)=105,最后 q = 15 26 q=\frac{15}{26} q=2615
tip:假设取出是白球能不能推出 P ( A ) = 1 P(A)=1 P(A)=1,显然不能, P ( A ) P(A) P(A)为实际概率。而题目给出的假设对假设下的事件 B 1 B_1 B1产生影响,实际 P ( B 1 ) = 1 10 P(B_1) = \frac{1}{10} P(B1)=101,而 P ( B 1 ∣ A ) = 15 26 P(B_1|A) = \frac{15}{26} P(B1A)=2615

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值