浅谈机器学习与深度学习的区别

1. 前言

若非严谨地说,机器学习是一个更加广泛的学科,深度学习则是其一个分支。然而,生活中,我们往往发现很多人习惯以为深度学习更加高深,更加现代,更加人工智能,实际两者的关系并非如此。很多时候,人们只是将传统的浅层学习模型误认为是机器学习算法,相应深度学习模型则深度学习算法。为了简要说明这两者的差异,这里我们从如下几个方向,对常规机器学习与深度学习进行差异性介绍

  1. 技术起源
  2. 算法差异
  3. 应用差异
  4. 数据差异
  5. 潜在应用差异

2. 技术起源

机器学习(Machine Learning, ML)
机器学习是人工智能的一个分支,起源于20世纪50年代,其核心思想是通过算法让机器从数据中学习规律,从而对未知数据做出预测或决策。早期的机器学习算法包括决策树、支持向量机(SVM)、随机森林等。

深度学习(Deep Learning, DL)
深度学习是机器学习的一个子集,起源于2006年左右,由杰弗里·辛顿(Geoffrey Hinton)等人提出。它基于人工神经网络的研究,特别是多层前馈神经网络(即深度神经网络)。深度学习通过模拟人脑的神经元连接,能够自动提取特征并进行学习。

3 . 算法差异

机器学习算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sp_fyf_2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值