第二类曲面积分、场论、高斯公式和斯托克斯公式

提示:本文的适用对象为已修过《微积分A1》的非数学系学生,文中题型方法为个人总结,为个人复习使用。部分理解虽然不太严谨,但对于解题的实用性较强。若有疏漏or错误,欢迎批评指正。

0. 对格林公式使用时的注意事项举例分析(接上文)

(选自吉米多维奇)计算曲线积分I=\oint_{L}^{}\frac{xdy-ydx}{4x^{2}+y^{2}},其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向

step1:注意到这个第二型曲线积分形式上的复杂性,决定尝试格林公式

step2:写出P和Q的值,计算P对y的偏导和Q对x的偏导,发现当(x,y)不是原点时,这两个偏导相等

step3:由于全微分的等价条件,可知道对于这条闭合曲线,积分后结果为0

step4:可以还有原点处我们没有考虑(在原点处不连续),这样的解题是不完整的,因此我们要挖去原点,选择积分好积的挖去公式

step5:由于4x^{2}+y^{2}的分母形式,我们选择椭圆C:4x^{2}+y^{2}=1(取逆时针方向)作为挖去公式

step6:

 总结:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值