该论文分别从局部相似性预测推荐模型 LSPCNN、物品冷启动推荐模型 TEXTRANK-LSTM、长尾物品推荐模型 LDBM 和 GNN 链路预测推荐模型 GNNLPR四部分进行改进描述。鉴于可借鉴的知识点,下文只着重介绍文章的第四部分,即 GNN 链路预测推荐模型 GNNLPR。
1.相关知识点描述
1.1 GNN
图神经网络(Graph Neural Networks,GNN)是一类基于深度学习的、图域分析的新型拓展神经网络,并且允许非欧几里德数据直接作为深度神经网络的输入,具有良好的性能和可解释性,近年来成为深度学习研究的热点。在推荐系统领域,图神经网络 GNN 的发展,为人们进一步分析推荐系统实体及其相互间的关系提供了更好的表示方式,基于图神经网络 GNN 的个性化推荐已成为深度学习推荐系统研究的一个新的方向。
1.2 链路预测推荐方法
链路预测推荐方法作为一种常用的推荐方法,其思想就是在已知部分的网络节点信息与结构信息基础上,对网络中尚未产生连边的两个节点之间,将会有多大的可能性能够产生链接,对此进行预测并实现推荐。基于链路预测的个性化推荐研究,也一直受到广大推荐系统研究者的关注。
1.3 GNNLPR
在研究了图神经网络 GNN 推荐的主要过程中,分析了 GNN 链路预测推荐中的问题,并提出了一种基于图神经网络链路预测的个性化推荐模型 GNNLPR。新模型在图神经网络 GNN 聚集与更新操作的基础上,同时考虑到节点对间的路径信息和节点对自身信息,实现链路预测推荐。
1.4 GNN的推荐过程
基于图神经网络 GNN 的个性化推荐其过程主要分为三个步骤:
(1)根据推荐系统实体及其相互关系构建对应的 GNN 模型。
(2)决定 GNN 模型的信息传播与更新方法。
(3)提取出更新后的节点(边、子图)特征,并用相关算法实现推荐。
1.5链路预测及推荐
链路预测的目的是根据观测到的链路和节点的属性,了解网络的结构和形成,从而预测尚未存在连接的节点对之间存在链路的可能性。机器学习链路预测的基本任务就是运用相似性度量作为输入特性、节点嵌入到一个低维向量空间、在保留图的拓扑结构同时结合节点与边的属性信息进行链路预测。图1中从特征提取技术和特征学习方法的角度提出了一个有关链路预测研究的分类方法(仅供参考)。