Utilization of Real Time Behavior and Geographical Attraction for Location Recommendation (个人笔记)

本文介绍了一种名为GeoRTGA的实时位置推荐方法,该方法结合了实时用户行为和地理吸引力。通过增量随机游走模型实时更新用户偏好,同时利用模糊分配处理签入数据以捕捉时间相关性。此外,通过基于类别和个性化的空间模型考虑地理位置的吸引力。GeoRTGA在四个真实数据集上的实验显示,其性能优于现有五种推荐算法,提高了位置推荐的精度、召回率和NDCG指标。
摘要由CSDN通过智能技术生成

文章《Utilization of Real Time Behavior and Geographical Attraction for Location Recommendation》(利用实时行为和地理吸引力进行位置推荐)出自TSAS,Vol. 8, No. 1, Article 4. Publication date: October 2021

文章地址:Utilization of Real Time Behavior and Geographical Attraction for Location Recommendation | ACM Transactions on Spatial Algorithms and Systems

概要:个性化位置推荐是近年来一个日益活跃的话题,它根据用户的时间和地理空间访问模式向用户推荐合适的位置。现有的位置推荐方法通常是根据历史批量签入来估计用户的访问偏好概率。然而,在实践中,当用户的行为被实时更新时,由于签入的数量,使用相同的批处理方法重新估计和更新用户的访问偏好通常会降低成本。此外,用户移动模式的一个重要性质是,用户更容易被吸引到具有相同类别的密集位置以进行特定行为的区域。在本文中,我们提出了一种称为Georga的位置推荐方法,通过利用实时用户行为和地理吸引力来解决这些问题。Georga包含两个子模型:实时行为推荐模型和基于吸引力的空间模型。实时行为推荐模型旨在推荐用户喜欢访问的实时可能行为,建立基于吸引力的空间模型,根据地理位置信息、相应的位置类别和入住人数,发现基于类别的空间和个性化的空间模式。在四个公共现实值机数据集上进行了实验,结果表明,所提出的GeoRTGA算法优于现有的五种位置推荐方法。 

要解决的问题:

a. 如何增量、高效地学习和更新用户的访问偏好,以处理连续用户的签入是实时位置推荐方法的关键。

b.在位置推荐中,应该考虑如何将用户的签入数据转化为用户的行为,从而更好地捕捉用户活动的时间相关性。

c.应该考虑到由相同类别的位置所形成的地理吸引力,相同类别的地方提供类似的服务,通常位于密集区域,使得该区域的地点对用户更具有吸引力。

主要贡献:

a.基于带重启的增量随机游走(IRWR)方法,建立了一个实时行为推荐模型,该模型可以增量计算响应动态和不断变化的签入的偏好变化。我们提出的行为推荐模型通过基于批量计算的用户行为矩阵的向量添加和缩放来响应新的签入,矩阵中的条目表示用户在给定时间内关于位置类别的访问概率。

b.为了反应签入的相关性,提出了一种模糊分配方法,将每个签入分配为几个连续的时间间隔。在模糊分配中,每个签入被隐射为附近时间间隔内的多个行为,并利用遗传算法圈定每个位置类别的时间影响。

c.提出了一种基于吸引力的空间模型来估计位置对用户的吸引力。 更具体地说,提出了两种子空间模型,即基于类别的吸引力空间模型和个性化的吸引力空间模型。 基于具有相同位置类别的位置,建立基于类别的景点空间模型来估计与这些位置类别匹配的位置的访问景点概率。 个性化景点空间模型估计用户对访问地点的个人偏好。

d.在四个大规模真实数据集上对所提出的方法GeoRTGA进行了评估。实验结果表明,本文提出的GeoRTGA方法优于现有的五种位置推荐方法。

模型框架:

Georga的框架由两部分组成:实时行为推荐模型和基于吸引力的空间模型。模型图见下图1。

图1.Georga的框架图

规定:

a. 签入c=(u,l,t)记录用户存在的实例。它是一个元组,由三个元素组成,即用户id、位置id和相应的访问时间戳。为了更好地表示和理解签入,可以将它们转换为行为。

b. 行为b=(ctgy,ti)是一个元组,包含签入发生的时间间隔(ti)和签入位置的类别(ctgy)。每个签入c=(u,l,t)也可以表示为c=(u,b)。将签入转换为行为可以缓解数据集的稀疏性,并帮助发现隐藏的用户行为模式。

c. 给定签入数据集,可以提取位置类别集。时间间隔是通过将一天分为几个部分来生成的,例如30分钟或一小时。行为集B是一组类别和时间间隔的所有可能组合的列表。如果位置类别和时间间隔的数量分别为|CTGY |和| TI |,那么行为集B的大小为|CTGY |∗ |TI |。例如,如果一个数据集的位置类别的数量是200,并且时间间隔是通过将一天拆分为小时来生成的,那么行为集B的大小是200*24=4800。

实时行为推荐模型:

      Georga方法的第一步是建立一个实时行为推荐模型,以估计用户在任何给定时间对特定行为的偏好可能性。与其他行为推荐模型不同,Georga提出了一种增量更新算法,能够有效地满足实时位置推荐的时间约束。

       本文利用签入的模糊分配来捕获相邻时间间隔之间的连续性和时间影响。签入的模糊分配方法将每个签入视为时间上的正态分布,因此每个签入可以通过使用具有相应模糊隶属度值的模糊分配映射到多个行为。时间间隔签入的模糊隶属度值定义为以时间间隔的起点和终点为界的隶属函数曲线下的面积。每个签入的正态分布公式包含两个参数:期望值和标准偏差,其中期望值是签入的时间戳,标准偏差表示签入对附近连续时间间隔的时间影响。

 假设签入c发生在时间t0,时间影响σ,则随机时间t的时间签入概率p_{c}(t)被定义为模糊隶属函数p_{c}(t):

因此,给定一个时间间隔[ta,tb],可以通过正态分布概率密度函数的积分计算给定时间间隔[ta,tb]的值机的模糊隶属度值,如下所示:

 签到的时间影响取决于位置的类别。 如果用户只在该位置停留很短的时间,则来从起始到相邻时间间隔的时间影响很小。 另一方面,对于需要用户停留更长时间的活动,时间影响是一个更大的值。

模糊分配将一次签入映射为跨越多个时间间隔的一组行为。具体来说,签入c=(ui,l,t)可以与一组用户行为相关联与对应的模糊隶属度值配对,表示为{(u_{i},b_{1},f_{ui,b1}),(u_{i},b_{2},f_{ui,b2}),…,(u_{i},b_{k},f_{ui,bk})},其中f_{ui,bk}是映射到行为bj的签入c的模糊隶属度值。通过模糊赋值处理用户的所有签入后,用户行为对集变为{u_{i},b_{1},\sum f_{ui,b1}},其中\sum f_{ui,b1}是基于用户界面签入的行为bj的累积成员值,表示用户界面执行特定行为bj的可能性。 然后,基于所有用户的历史签入记录生成初始加权用户行为图(用iUBG表示),并通过归一化累积成员值。接下来 iUBG转换为加权用户行为矩阵(用W表示),如下所示:

 加权用户行为矩阵W中的每个b_{ui,bj}代表用户ui对行为bj的访问偏好。 

基于吸引力的空间模型

1.基于类别的吸引力空间模型

        密集区域内同一类别的更多地点通常对用户具有更高的吸引力。基于推荐的位置类别,建立了基于类别的吸引力空间模型,以估计相同类别位置的吸引力概率。通过考虑同一类别的两个地点的距离和签到次数,来估计访问一个地点的吸引力概率。

         给定一个可达区域α和一个推荐行为b,一个与α内行为b相匹配的位置集L,位置L的基于类别的吸引力A_{b}\left ( l|a,b \right )计算如下:

 其中 { L- l } 表示 L 中除 l 之外的一组位置,| L- l | 是 { L- l } 的大小,dist (l, l') 计算 l 和 l' 之间的距离,| c_{l} | 和 | c_{l'} | 分别表示在 l 和 l' 处签到的次数.表示 l 和 l' 之间的吸引力,同时考虑位置之间的距离和签到次数, 表示位置 l 和位置 l' 之间所有用户在位置 l 签到次数的比例。因此,当考虑位置 l' 的空间影响时, 表示位置 l 对用户 u 的基于类别的吸引力。

        上式通过结合地点之间的距离和入住人数的影响来估计基于类别的空间吸引力。一般来说,距离同一类别中其他地点较近、入住人数较多的地点对用户更具吸引力。在计算出与行为匹配的位置的吸引力值后,在每个可达区域中,它们被归一化为0到1,即基于类别的访问与行为匹配的位置的偏好空间概率 。

个性化吸引力空间模型

为了建立个性化的景点空间模型,对每个用户在给定时间间隔ti的入住数据进行处理。对于每个可到达区域,计算位置对每个用户的吸引力。考虑到每个用户都可以访问每个可到达区域中的有限位置,因此,给定用户 u和可到达区域α,区域α中的位置可以分为两类:用户u访问的位置(用Lu表示)和用户u未访问的位置(用L’u表示)。

给定用户 u,时间间隔 ti 和可达区域 α,u 在 ti 期间在区域 α 内访问的一组位置 Lu,位置 l ∈ Lu 到用户 u 的个性化吸引力 Avisited (l |u, α, ti) 在给定的时间间隔 ti 定义为:

 {Lu - l} 表示 L 中除 l  之外的一组位置, |Lu - l | 是 {Lu - l} 的大小,l' 是 {Lu - l} 中的一个位置。 dist (l, l') 计算位置 l 和 l' 之间的距离,|c_{u,l}| 和 |c_{u,l'}| 分别是用户 u 在位置 l 和 l' 的签到次数。 表示用户在位置 l 的 u 签到次数在位置 l 和 l' 之间的比率, 通过考虑距离和签到次数来计算 l 和 l' 之间的吸引力。所以 表示考虑位置 l' 的空间影响时 l 对用户 u 的个性化吸引力。

 数据集:

性能指标:  precision、recall、NDCG

对比算法:BLR 、GeoMF++、 RecNet、 TICRec 、Rank-GeoFM 

结果比较:

图1 precision

 图2 recall

 图3  NDCG

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值