Codeforces 1610D. Not Quite Lee

Codeforces 1610D. Not Quite Lee

思路

首先容易发现

如果 b i b_i bi 是奇数,那么它的贡献可以写成 k i b i k_ib_i kibi 其中 k i k_i ki 是任意整数

如果 b i b_i bi 是偶数,那么可以写成 b i 2 + k i b i \cfrac{b_i}{2}+k_ib_i 2bi+kibi

稍微推一下可以发现,一个序列里只要有一个奇数那么肯定有一种方法变为0

奇数和奇数相消取 l c m lcm lcm

奇数和偶数相消写成丢番图方程的形式,由裴蜀定理一定有解(两者的 gcd ⁡ \gcd gcd 一定为奇数,所以右边的除2不用管)

那么只需要考虑只有偶数的情况

先说结论,将偶数写成 2 k ∗ c 2^k*c 2kc 的形式,那么将所有 k k k 相同的数看做整体,分别记数量为 t 1 , t 2 , . . . , t k t_1,t_2,...,t_k t1,t2,...,tk

那么答案就是

( 2 n − 2 ∑ t i ) + ∑ i = 1 k ( ( 2 t i − 1 − 1 ) ∗ 2 ∑ j = i + 1 k t j ) \left(2^n-2^{\sum t_i}\right) + \sum_{i=1}^{k}\left((2^{t_i-1}-1)*2^{\sum_{j=i+1}^{k}t_j}\right) (2n2ti)+i=1k((2ti11)2j=i+1ktj)

第一部分好理解,就是所有情况减去只有偶数的情况,而第二部分就是考虑只有偶数的情况里哪些是成立的

首先可以发现,选择的数里面2的次幂最小的数一定要出现偶数次,否则依旧写成一次不定方程的形式,用充要条件可判断无解(见 wiki )


证明:

不妨设选了 x x x 个数,那么就可以写成
∑ i = 1 x ( 2 k i − 1 ∗ c i ) = ∑ i = 1 x ( n i ∗ 2 k i ∗ c i ) \sum_{i=1}^x\left( 2^{k_i-1}*c_i \right) = \sum_{i=1}^x\left( n_i*2^{k_i}*c_i \right) i=1x(2ki1ci)=i=1x(ni2kici)

这个等式有整数解的充要条件是

gcd ⁡ ( 2 k 1 ∗ c 1 , 2 k 2 ∗ c 2 , . . . ) ∣ ∑ i = 1 x ( 2 k i − 1 ∗ c i ) \gcd\left( 2^{k_1}*c_1,2^{k_2}*c_2,... \right)\mid\sum_{i=1}^x\left( 2^{k_i-1}*c_i \right) gcd(2k1c1,2k2c2,...)i=1x(2ki1ci)

因为 c i c_i ci 都是奇数,可以稍微改写一下

gcd ⁡ ( 2 k 1 , 2 k 2 , . . . ) ∗ gcd ⁡ ( c 1 , c 2 , . . . ) ∣ ∑ i = 1 x ( 2 k i − 1 ∗ c i ) \gcd\left( 2^{k_1},2^{k_2},... \right)*\gcd\left( c_1,c_2,... \right)\mid\sum_{i=1}^x\left( 2^{k_i-1}*c_i \right) gcd(2k1,2k2,...)gcd(c1,c2,...)i=1x(2ki1ci)

不难发现成立的充要条件等价于

gcd ⁡ ( 2 k 1 , 2 k 2 , . . . ) ∣ ∑ i = 1 x ( 2 k i − 1 ∗ c i ) \gcd\left( 2^{k_1},2^{k_2},... \right)\mid\sum_{i=1}^x\left( 2^{k_i-1}*c_i \right) gcd(2k1,2k2,...)i=1x(2ki1ci)

min ⁡ ( 2 k 1 , 2 k 2 , . . . ) ∣ ∑ i = 1 x ( 2 k i − 1 ∗ c i ) \min\left( 2^{k_1},2^{k_2},... \right)\mid\sum_{i=1}^x\left( 2^{k_i-1}*c_i \right) min(2k1,2k2,...)i=1x(2ki1ci)

现在考虑转化右边,记 min ⁡ ( k 1 , k 2 , . . . ) = Δ k \min(k_1,k_2,...)=\Delta k min(k1,k2,...)=Δk

那么右边可以写作

2 Δ k − 1 ∗ ∑ ( 2 k i − Δ k ∗ c i ) 2^{\Delta k-1}*\sum\left(2^{k_i-\Delta k}*c_i \right) 2Δk1(2kiΔkci)

所以充要条件等价于满足和式是2的倍数,显然,这也等价于 k i = Δ k k_i=\Delta k ki=Δk 的项有偶数个,也就是上面的结论


反之,易得如果最小的2的次幂有偶数个,那么无论拥有更大2的次幂的数怎么选都一定有解

所以枚举选的最小的2的次幂,用在其中选偶数个的方案数乘上在更大2的次幂中随便选的方案数在再累加就是仅有偶数的情况,即

∑ i = 1 k ( ( 2 t i − 1 − 1 ) ∗ 2 ∑ j = i + 1 k t j ) \sum_{i=1}^{k}\left((2^{t_i-1}-1)*2^{\sum_{j=i+1}^{k}t_j}\right) i=1k((2ti11)2j=i+1ktj)

前一项由二项式定理易得(要去除什么都不选的情况,因为枚举到这里的时候要选)

说的很长实际代码很短(

其实推出来之后容易发现,奇数也可直接扔进去做(

代码

#include <bits/stdc++.h>
using namespace std;

std::mt19937 rng(std::random_device{}());
typedef long double ld;
typedef long long ll;
typedef unsigned long long ull;
typedef const int& cint;
typedef const ll& cll;
typedef pair<int, int> pii;
typedef pair<int, ll> pil;

#define ls (loc<<1)
#define rs ((loc<<1)|1)

const int mod1 = 1e9+7;
const int mod2 = 998244353;
const int inf_int = 0x7fffffff;
const int hf_int = 0x3f3f3f3f;
const ll inf_ll = 0x7fffffffffffffff;
const double ept = 1e-9;

int n;
int a[200200];
int val[200];
ll to[200200];

void init() {
    to[0] = 1;
    for(int i=1; i<=200000; i++)
        to[i] = to[i-1] * 2 % mod1;
}

int main() {
    // freopen("1.in", "r", stdin);
    //cout.flags(ios::fixed); cout.precision(8);
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    int T_=1;
    // std::cin >> T_;
    init();
    for(int _T=1; _T<=T_; _T++) {
        cin >> n;
        ll sum = 0;
        for(int i=1; i<=n; i++) cin >> a[i];
        for(int i=1; i<=n; i++) {
            if(a[i]&1) ++ sum;
            else {
                int r = 0;
                while(!(a[i]%(1<<r))) ++r;
                ++val[r-1];
            }
        }
        ll ans = (to[n] - to[n-sum] + mod1) % mod1;
        int r = 0;
        for(int i=1; i<=33; i++) {
            if(!val[i]) continue;
            r += val[i];
            ans += (to[val[i]-1]-1) * to[n-sum-r];
            ans %= mod1;
        }
        cout << ans << endl;
    }
    return 0;
}

题外话

其实C题把人心态搞炸以后就来做这题了,然后卡在了只有偶数的情况上,猜了个错的结论还过了样例(

实际上差不多已经推完了,要不是C(

幸亏拿的小号,要不铁定飞了,毕竟表现分只有1500多(

一段时间没训练竟然变得这么菜(

只希望接下来上海能发挥好,不要演队友(

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值