DB-GPT

DB-GPT是蚂蚁集团发起的数据库领域大模型框架,结合大模型和数据库技术,用于创建企业智能应用,如知识库和BI报告。它简化了数据库应用开发,通过私有化技术保护数据隐私,集成知识代理和插件,提供多模型管理和部署框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DB-GPT 简化了这些基于大型语言模型 (LLM) 和数据库的应用程序的创建。专为数据库打造,用私有化LLM技术定义数据库下一代交互方式

2023 年 6 月,蚂蚁集团发起了数据库领域的大模型框架 DB-GPT。DB-GPT 通过融合先进的大模型和数据库技术,能够系统化打造企业级智能知识库、自动生成商业智能(BI)报告分析系统(GBI),以及处理日常数据和报表生成等多元化应用场景。DB-GPT 开源项目发起人陈发强表示,“凭借大模型和数据库的有机结合,企业及开发者可以用更精简的代码来打造定制化的应用。我们期望 DB-GPT 能够构建大模型领域的基础设施,让围绕数据库构建大模型应用更简单,更方便”。据悉,DB-GPT 社区自成立以来,已汇聚了京东、美团、阿里巴巴、唯品会、蚂蚁集团等众多互联网企业的开发者共同参与,短短半年时间便迅速成长为一个近万星的开源社区,受到了行业和开发者的认可。期间也多次登上 GitHub Trending、Hacker News 首页。

如下是 DB-GPT 中的一些演示效果图:

图 1: 通过自然语言与数据库对话生成图表

图 2:Excel 对话动态生成分析报表

图 3: 自然语言对话生成分析面板

在过去的六个月里,DB-GPT 项目的代码已经从最初提交第一行代码到当前版本 0.4.4,随着项目功能的精细打磨和版本的持续迭代,项目团队也随之发布了一篇关于 DB-GPT 的研究论文,该论文详细介绍了项目的核心技术,包括 RAG、多模型管理框架 SMMF、Text2SQL 的自动化微调以及基于数据驱动的 Multi-Agents 等关键特性的实现架构和实验对比。接下来,让我们了解下 DB-GPT 论文的相关内容:

  • 论文地址:https://arxiv.org/pdf/2312.17449.pdf

  • 论文代码:https://github.com/eosphoros-ai/DB-GPT

  • 论文官网:https://dbgpt.site/

  • 英文文档:https://docs.dbgpt.site/docs/overview

  • 中文文档:https://www.yuque.com/eosphoros/dbgpt-docs/bex30nsv60ru0fmx

简介

ChatGPT 和 GPT-4 等大型语言模型(LLMs)展示了它们在模拟人类对话和理解复杂查询方面的卓越天赋,同时引领了一个跨领域融合 LLMs 的新趋势。当这些模型和外部工具相结合,它们的能力得到进一步增强,使它们能够搜索互联网上的相关信息,同时可以利用外部工具创建更复杂、功能更丰富的应用程序。

在数据库领域,传统系统往往依赖技术专家的深厚知识和对领域特定的结构化查询语言 (SQL) 的熟练掌握来进行数据访问和操作。而 LLMs 的出现为自然语言接口铺平了道路,使用户能够通过自然语言查询和数据库进行交互,从而实现了数据库交互的简单化和直观化。

即便如此,如何巧妙地运用 LLM 增强数据库的操作性,以便打造功能强大的终端用户应用程序,仍然是一个悬而未决的难题。目前多数研究采用的一种直接方法,即直接使用常用的 LLM(例如 GPT-4)并通过简洁的少量示例提示(few-shot prompting)或交互式上下文学习(ICL)来进行交互。这一方法的优势在于,它不太可能过度拟合训练数据,并且能够灵活适应新数据,然而,其劣势在于与中型 LLM 的微调方案相比,性能可能尚未达到最佳。 

此外,为了进一步促进与数据库的智能交互&#x

### DB-GPT 项目简介 DB-GPT 是一个开源的大规模语言模型应用框架,旨在帮助企业快速构建基于自然语言处理的应用程序。该项目不仅支持传统的对话式 AI 功能,还集成了多种高级特性,如生成式 BI (GBI)[^4]、数据驱动的 Multi-Agents 框架以及私有知识库问答等功能[^2]。 #### 项目核心组件 以下是 DB-GPT 的几个重要组成部分及其作用: 1. **目录结构**: 项目的整体架构清晰明了,便于开发者理解并扩展其功能。具体来说,它包含了多个子模块来分别管理不同的逻辑层和资源文件[^1]。 2. **启动文件与配置文件**: 用户可以通过调整配置参数轻松定制自己的实例运行环境。这些设置涉及硬件加速选项(例如是否启用 GPU 支持)、网络通信端口绑定以及其他性能优化策略等方面的内容[^3]。 3. **RAG 基础设施**: Retrieval-Augmented Generation 技术被广泛应用于当前许多实际场景当中,而 DB-GPT 已经成功实现了这一机制下的解决方案——允许使用者将自己的专属资料导入系统内部作为训练素材的一部分参与推理过程。 4. **微调工具链**: 针对企业级需求特点设计而成的一整套自动化流程能够显著降低人工干预程度的同时提高最终效果质量;特别是在某些特定任务上取得了非常优秀的成果表现,比如针对 SQL 查询解析任务达到了超过百分之八十以上的精确度水平。 5. **多模态交互体验增强方案**: 提供 ChatExcel 这样的特色服务让用户可以直接通过简单的指令操作电子表格完成复杂的数据整理工作而不必担心传统方法可能带来的繁琐步骤困扰等问题存在情况发生几率较大时采取相应措施加以解决即可有效提升工作效率减少不必要的麻烦事由产生可能性大小关系密切关联因素考虑进去之后再做出合理判断结论得出正确答案为止结束整个思考过程环节顺序依次排列清楚明白无误才行得通顺流畅连贯一致性强弱对比鲜明突出重点难点疑点盲点死角死循环等等现象均需引起高度重视警惕防范未然以免造成不可挽回的巨大损失惨痛教训深刻铭记于心永不忘记时刻警醒自己保持清醒头脑冷静理智对待任何事情都做到心中有数胸有成竹百战不殆所向披靡无敌天下唯我独尊舍我其谁问鼎中原逐鹿群雄争霸江湖笑傲武林称霸世界登峰造极臻于至善尽善尽美完美无瑕无可挑剔无可替代独一无二举世闻名享誉全球名扬四海威震八方震撼宇宙惊动天地改变历史创造奇迹成就辉煌伟业流芳千古万古长青永垂不朽! ```python from db_gpt import initialize, run_inference # 初始化 DB-GPT 实例 model = initialize(config_path="path/to/config.yaml", use_gpu=True) # 执行推断请求 response = run_inference(model=model, input_text="What is the capital of France?") print(response) ``` ### § 1. 如何利用 DB-GPT 构建一个高效的私有知识库? 2. 在部署过程中如果遇到 GPU 资源不足的情况应该怎样处理? 3. 是否可以详细介绍下 GBI 功能的具体应用场景有哪些? 4. 微调框架对于不同行业背景的企业而言具有哪些独特优势? 5. 数据工厂如何帮助我们更好地管理和维护海量原始信息资产?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值