市场营销问题 (三):机票的销售策略

 

某航空公司每天有三个航班服务于 A ,B ,C, H四个城市,其中城市H 是可供转机使用的。三个航班的出发地-目的地分别为 AH ,HB, HC ,可搭乘旅客的大数量分别为120人,100人,110人,机票的价格分头等舱和经济舱两类。经过市场调 查,公司销售部得到了每天旅客的相关信息,见表10。该公司应该在每条航线上分别分配多少头等舱和经济舱的机票

 (1)问题分析

公司的目标应该是使销售收入最大化,由于头等舱的机票价格大于对应的经济舱的 机票价格,很容易让人想到先满足所有头等舱的顾客需求:这样 AH 上的头等舱数量 =33+24+12=69,HB上的头等舱数量=24+44=68,HC 上的头等舱数量=12+16=28, 等等,但这种贪婪算法是否一定得到好的销售计划?

(2)模型建立

考虑5个起终点航线AH ,AB ,AC,HB ,HC依次编号为i(i=1,2,..,5),相应的头等舱需求记为 \small a_{i}  ,价格记为 \small p_{i} ;相应的经济舱需求记为 \small b_{i}  ,价格记为 \small q_{i} 。此外,三个航班AH ,HB, HC的顾客容量分别是 \small c_{1} =120  , \small c_{2} =100  ,\small c_{3} = 110  。这就是例中给出的全部数据。 

设航线i(i =1,2,...,5 )上销售的头等舱机票数为 \small x_{i}  ,销售的经济舱机票数为 \small y_{i} ,这就是决策变量。 显然,目标函数应该是

                                            ( 1 )
 

约束条件有以下两类:

i)三个航班上的容量限制

例如,航班 AH 上的乘客应当是购买 AH ,AB ,AC 机票的所有旅客,所以

         
                                                                            ( 2 )
 
同理,有 

                          ( 3 )   

ii)每条航线上的需求限制 

                 ( 4 )              

(3)模型求解 

MODEL: 
TITLE 机票销售计划; 
SETS:     
    route /AH,AB,AC,HB,HC/:a,b,p,q,x,y; 
ENDSETS 
DATA: 
a p b q= 
    33 190 56 90 
    24 244 43 193 
    12 261 67 199 
    44 140 69 80 
    16 186 17 103 ; 
c1 c2 c3 = 120 100 110; 
ENDDATA 
[obj] Max = @SUM(route: p*x+q*y ); 
[AH] @SUM(route(i)|i#ne#4#and#i#ne#5:x(i)+y(i)) < c1; 
[HB] @SUM(route(i)|i#eq#2#or#i#eq#4:x(i)+y(i))  < c2; 
[HC] @SUM(route(i)|i#eq#3#or#i#eq#5:x(i)+y(i))  < c3; 
@FOR(route: @bnd(0,x,a);@bnd(0,y,b) ); 
END

计算结果为,航线AH ,AB ,AC,HB,HC 上分别销售33,10,12,44,16张头等舱机票,分别销售0,0,65,46,17张经济舱机票,总销售收入为39344元。从三 个约束的松弛/剩余(slack or surplus)均为0可知,机上已经全部满员。

(4)结果讨论

           按道理,机票张数还应该有整数约束。这里直接按连续线性规划解,得到的解已经 都是整数,所以也就没有必要再加上整数约束了。 后我们指出:最优解中 AB 线路上头等舱的需求(24人)并没有全部得到满足, 所以本节开始时介绍的贪婪算法的思想是不能保证求到最优解的。事实上,读者不难求出贪婪算法得到的解对应的总销售额是38854元,小于这里的优值39344元。 

 

在激烈的市场竞争中,航空公司为争取更多的客源而开展的一个优质服务项目是预订票业务。公司承诺,预先订购机票的乘客如果未能按时前来登机,可以乘坐下一班机或退票,无需附加任何费用。 设飞机容量为,若公司限制只预订张机票,那么由于总会有一些订了机票的乘客不按时前来登机,致使飞机因不满员飞行而利润降低,甚至亏本。如果不限制订票数量,则当持票按时前来登机的乘客超过飞机容量时,将会有乘客不能乘坐他们预订的航班航空公司需要采取各种不同方法来应对这些乘客。有的不给予任何补偿,有的被改签后面的航班,有的给予一定赔偿金。这样,为极大化公司的经济利益,必然存在一个恰当的预订票数量的限额。 假设已经知道飞行费用(可设与乘客人数无关)、机票价格(一般飞机满员50%_60%时不亏本,由飞行费用可确定价格)、飞机容量、每位被挤掉者的赔偿金等数据,以及由统计资料估计的每位乘客不按时前来登机的概率(不妨认为乘客间是相互独立的),建立一个数学模型,综合考虑公司经济利益(飞行费用、赔偿金与机票收入等),确定最佳的预订票数量。 1)对上述飞机容量、费用、迟到概率等参数给出一些具体数据,按你的模型计算,对结果进行分析。 2)对模型进行改进,如增设某类旅客(学生、旅游者)的减价票,迟到则机票作废。 提示:按时到达机场乘坐某航班的乘客数是一个随机变量,因此利润也是随机变量,需要给出利润的数学模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值