神经网络模型用于数学建模

1  神经网络简介 

目录

1  神经网络简介 

1.1  人工神经元结构  

激活函数  ϕ(⋅ )                                 Matlab 中的激活(传递)函数

1.2  网络结构及工作方式 

2  蠓虫分类问题与多层前馈网络 

2.1  蠓虫分类问题                       2.2  多层前馈网络 

2.3  后向传播算法                        2.4  蠓虫分类问题的求解 

3  处理蠓虫分类的另一种网络方法 

3.1 几个有关概念                           习 题 


人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在反映人脑结构及 功能的一种抽象数学模型。自 1943 年美国心理学家 W. McCulloch 和数学家 W. Pitts 提 出形式神经元的抽象数学模型—MP 模型以来,人工神经网络理论技术经过了 50 多年 曲折的发展。特别是 20 世纪 80 年代,人工神经网络的研究取得了重大进展,有关的理 论和方法已经发展成一门界于物理学、数学、计算机科学和神经生物学之间的交叉学科。 它在模式识别,图像处理,智能控制,组合优化,金融预测与管理,通信,机器人以及 专家系统等领域得到广泛的应用,提出了 40 多种神经网络模型,其中比较著名的有感 知机,Hopfield 网络,Boltzman 机,自适应共振理论及反向传播网络(BP)等。在这 里我们仅讨论基本的网络模型及其学习算法。

1.1  人工神经元结构

下图表示出了作为人工神经网络(artificial neural network,以下简称 NN)的基本 单元的神经元模型,它有三个基本要素: 

激活函数  ϕ(⋅ ) 

可以有以下几种: 【详细了解请参考:深度学习常用激活函数: Sigmoid & ReLU & Softmax

 (0)Softmax - 用于多分类神经网络输出

(1)阈值函数 、阶梯函数

相应的输出 \large y_{k}  为 

(2)分段线性函数 

它类似于一个放大系数为 1 的非线性放大器,当工作于线性区时它是一个线性组合器, 放大系数趋于无穷大时变成一个阈值单元。 

(3)sigmoid 函数 (以前最常用) 

参数  α  > 0 可控制其斜率。 sigmoid 将一个实值输入压缩至[0,1]的范围,也可用于二分类的输出层。


(4)tanh  (双曲正切函数 ;Hyperbolic tangent function) 

 将 一个实值输入压缩至 [-1, 1]的范围,这类函数具有平滑和渐近性,并保持单调性.


(5)  relu (Rectified linear unit; 修正线性单元 ; 深度学习目前最常用的激活函数)

# Relu在tensorflow中的实现: 直接调用函数 
tf.nn.relu( features, name= None )
      

与Sigmoid/tanh函数相比,ReLu激活函数的优点是:

  •  使用梯度下降(GD)法时,收敛速度更快  
  • 相比Relu只需要一个门限值,即可以得到激活值,计算速度更快  

 缺点是:  Relu的输入值为负的时候,输出始终为0,其一阶导数也始终为0,这样会导致神经元不能更新参数,也就是神经元不学习了,这种现象叫做“Dead Neuron”。

 为了解决Relu函数这个缺点,在Relu函数的负半区间引入一个泄露(Leaky)值,所以称为Leaky Relu函数。

 (6)Leaky Relu  (带泄漏单元的relu )

           数学表达式: y = max(0, x) + leak*min(0,x) 

与 ReLu 相比 ,leak 给所有负值赋予一个非零斜率,  leak是一个很小的常数 \large a_{i} ,这样保留了一些负轴的值,使得负轴的信息不会全部丢失)

leaky ReLU

 

#leakyRelu在tennsorflow中的简单实现
 tf.maximum(leak * x, x),

       比较高效的写法为:

import tensorflow as tf
def LeakyReLU(x,leak=0.2,name="LeakyReLU"):
    with tf.variable_scope(name):
        f1 = 0.5*(1 + leak)
        f2 = 0.5*(1 - leak)
        return f1*x+f2*tf.abs(x)

(vi)  RReLU【随机ReLU】

在训练时使用RReLU作为激活函数,则需要从均匀分布U(I,u)中随机抽取的一个数值\large a_{ji}  ,作为负值的斜率。

总结:    激活函数可以分为 两大类 

  • 饱和激活函数: sigmoid、 tanh
  • 非饱和激活函数: ReLU 、Leaky Relu   、ELU【指数线性单元】、PReLU【参数化的ReLU 】、RReLU【随机ReLU】

相对于饱和激活函数,使用“非饱和激活函数”的优势在于两点:
    1.首先,“非饱和激活函数”能解决深度神经网络【层数非常多!!】的“梯度消失”问题,浅层网络【三五层那种】才用sigmoid 作为激活函数。
    2.其次,它能加快收敛速度。 【激活函数如何选】-微博视频

其它激活函数:softplus、softsign


Matlab 中的激活(传递)函数


 

1.2  网络结构及工作方式 

 除单元特性外,网络的拓扑结构也是 NN 的一个重要特性。从连接方式看 NN 主要 有两种。

(i)前馈型网络 各神经元接受前一层的输入,并输出给下一层,没有反馈。结点分为两类,即输入 单元和计算单元,每一计算单元可有任意个输入,但只有一个输出(它可耦合到任意多 个其它结点作为其输入)。通常前馈网络可分为不同的层,第i层的输入只与第 1 −i 层 输出相连,输入和输出结点与外界相连,而其它中间层则称为隐层。

(ii)反馈型网络 所有结点都是计算单元,同时也可接受输入,并向外界输出。 NN 的工作过程主要分为两个阶段:第一个阶段是学习期,此时各计算单元状态不 变,各连线上的权值可通过学习来修改;第二阶段是工作期,此时各连接权固定,计算 单元状态变化,以达到某种稳定状态。 从作用效果看,前馈网络主要是函数映射,可用于模式识别和函数逼近反馈网络 按对能量函数的极小点的利用来分类有两种:第一类是能量函数的所有极小点都起作 用,这一类主要用作各种联想存储器;第二类只利用全局极小点,它主要用于求解优化问题。 

2  蠓虫分类问题与多层前馈网络 

2.1  蠓虫分类问题 

蠓虫分类问题可概括叙述如下:生物学家试图对两种蠓虫(Af 与 Apf)进行鉴别, 依据的资料是触角和翅膀的长度,已经测得了 9 支 Af 和 6 支 Apf 的数据如下:

Af: (1.24,1.27),(1.36,1.74),(1.38,1.64),(1.38,1.82),(1.38,1.90),(1.40,1.70), (1.48,1.82),(1.54,1.82),(1.56,2.08).

Apf: (1.14,1.82),(1.18,1.96),(1.20,1.86),(1.26,2.00),(1.28,2.00),(1.30,1.96).

现在的问题是:

(i)根据如上资料,如何制定一种方法,正确地区分两类蠓虫。

(ii)对触角和翼长分别为(1.24,1.80),(1.28,1.84)与(1.40,2.04)的 3 个标本,用所得 到的方法加以识别。

(iii)设 Af 是宝贵的传粉益虫,Apf 是某疾病的载体,是否应该修改分类方法。

如上的问题是有代表性的,它的特点是要求依据已知资料(9 支 Af 的数据和 6 支 Apf 的数据)制定一种分类方法,类别是已经给定的(Af 或 Apf)。今后,我们将 9 支Af 及 6 支 Apf 的数据集合称之为学习样本。 

2.2  多层前馈网络 

为解决上述问题,考虑一个其结构如下图所示的人工神经网络,
 

使用sigmoid 激活函数:

图中下面单元,即\large \bullet  所示的一层称为输入层,用以输入已知测量值。在 我们的例子中,它只需包括两个单元,一个用以输入触角长度,一个用以输入翅膀长度。 中间一层称为处理层或隐单元层,单元个数适当选取,对于它的选取方法,有一些文献 进行了讨论,但通过试验来决定,或许是好的途径。在我们的例子中,取三个就足够 了。上面一层称为输出层,在我们的例子中只包含二个单元,用以输出与每一组输入 数据相对应的分类信息.任何一个中间层单元接受所有输入单元传来的信号,并把处理 后的结果传向每一个输出单元,供输出层再次加工,同层的神经元彼此不相联接,输入 与输出单元之间也没有直接联接。这样,除了神经元的形式定义外,我们又给出了网络 结构。有些文献将这样的网络称为两层前馈网络,称为两层的理由是,只有中间层及输 出层的单元才对信号进行处理输入层的单元对输入数据没有任何加工,故不计算在层 数之内

2.3  后向传播算法

对于一个多层网络,如何求得一组恰当的权值,使网络具有特定的功能,在很长一 段时间内,曾经是使研究工作者感到困难的一个问题,直到 1985 年,美国加州大学的 一个研究小组提出了所谓反向传播算法(Back-Propagation),使问题有了重大进展,这 一算法也是促成人工神经网络研究迅猛发展的一个原因。详细了解请看: 一文弄懂神经网络中的BP反向传播算法

下面就来介绍这一算法。【注:梯度法又称最速下降法。】

(iii)在如上的讨论中使用的是速下降法,显然,这也不是唯一的选择,其它的 非线性优化方法,诸如共轭梯度法,拟牛顿法等,都可用于计算。为了加速算法的收敛 速度,还可以考虑各种不同的修正方式。

(iv)BP 算法的出现,虽然对人工神经网络的发展起了重大推动作用,但是这一 算法仍有很多问题.对于一个大的网络系统,BP 算法的工作量仍然是十分可观的,这 主要在于算法的收敛速度很慢。更为严重的是,此处所讨论的是非线性函数的优化,那 么它就无法逃脱该类问题的共同困难:BP 算法所求得的解,只能保证是依赖于初值选 取的局部极小点。为克服这一缺陷,可以考虑改进方法,例如模拟退火算法,或从多个随机选定的初值点出发,进行多次计算,但这些方法都不可避免地加大了工作量。 

2.4  蠓虫分类问题的求解 

下面利用上文所叙述的网络结构及方法,对蠓虫分类问题求解。编写 Matlab 程序 如下:

clear 
p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90;
    1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; 
p2=[1.14,1.82;1.18,1.96;1.20,1.86;1.26,2.00    
    1.28,2.00;1.30,1.96]; p=[p1;p2]'; pr=minmax(p); 
goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)]; 
plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o') 
net=newff(pr,[3,2],{'logsig','logsig'}); 
net.trainParam.show = 10; 
net.trainParam.lr = 0.05; 
net.trainParam.goal = 1e-10; 
net.trainParam.epochs = 50000; 
net = train(net,p,goal); 
x=[1.24 1.80;1.28 1.84;1.40 2.04]'; 
y0=sim(net,p)
y=sim(net,x)

3  处理蠓虫分类的另一种网络方法 

3.1 几个有关概念

在介绍本节主要内容之前,首先说明几个不同的概念。在上一节中,我们把利用 BP 算法确定联接强度,即权值的过程称为“学习过程”,这种学习的特点是,对任何一 个输入样品,其类别事先是已知的,理想输出也已事先规定,因而从它所产生的实际输 出与理想输出的异同,我们清楚地知道网络判断正确与否,故此把这一类学习称为有监督学习;与它不同的是,有些情况下学习是无监督的,例如,我们试图把一组样品按其本身特点分类,所要划分的类别是事先未知的,需要网络自身通过学习来决定, 因而,在学习过程中,对每一输入所产生的输出也就无所谓对错,对于这样的情况,显 然 BP 算法是不适用的。 另一个有关概念是所谓有竞争的学习。在上节所讨论的蠓虫分类网络中,尽管我们 所希望的理想输出是 (0,1)或(1,0),但实际输出并不如此,一般而言,两个输出单元均同时不为 0。与此不同,我们完全可以设想另外一种输出模式:对应任何一组输入,所 有输出单元中,只允许有一个处于激发态,即取值为 1,其它输出单元均被抑制,即取 值为 0。一种形象的说法是,对应任何一组输入,要求所有的输出单元彼此竞争,唯一 的胜利者赢得一切,失败者一无所获,形成这样一种输出机制的网络学习过程,称为有 竞争的学习

3.2  简单的无监督有竞争的学习

本节叙述一种无监督有竞争的网络学习方法,由此产生的网络可用来将一组输入样 品自动划分类别,相似的样品归于同一类别,因而激发同一输出单元,这一分类方式, 是网络自身通过学习,从输入数据的关系中得出的。 蠓虫分类问题对应有监督的网络学习过程,显然不能由如上的方法来解决。但在这 种无监督有竞争的学习阐明之后,很容易从中导出一种适用于有监督情况的网络方法; 此外,本节所介绍的网络,在数据压缩等多种领域,都有其重要应用。 

为了更有效地使用如上算法,下面对实际计算时可能产生的问题,作一些简要说明。

 首先,如果初始权选择不当,那么可能出现这样的输出单元,它的权远离任何输入 向量,因此,永远不会成为优胜者,相应的权也就永远不会得到修正,这样的单元称之 为死单元。为避免出现死单元,可以有多种方法。一种办法是初始权从学习样本中抽样 选取,这就保证了它们都落在正确范围内;另一种办法是修正上述的学习算法,使得每 一步不仅调整优胜者的权,同时也以一个小得多的 η 值,修正所有其它的权。这样,对 于总是失败的单元,其权逐渐地朝着平均输入方向运动,终也会在某一次竞争中取胜。 此外,还存在有多种处理死单元的方法,感兴趣的读者可从文献中找到更多的方法。 

 

3.3  LVQ 方法 --学习矢量量化

上述有竞争学习的一个重要应用是数据压缩中的向量量子化方法(Vector Quantization,又称,学习矢量量化)。它的基本想法是,把一个给定的输入向量集合  \large I^{s} 分成M 个类别,然后 用类别指标来代表所有属于该类的向量。向量分量通常取连续值,一旦一组适当的类别确定之后,代替传输或存储输入向量本身,可以只传输或存储它的类别指标。所有的类别由M 个所谓“原型向量”来表示,我们可以利用一般的欧氏距离,对每一个输入向量找到靠近的原型向量,作为它的类别。显然,这种分类方法可以通过有竞争的学习直接得到。一旦学习过程结束,所有权向量的集合,便构成了一个“电码本”。

一般而言,上述无监督有竞争的学习,实际提供了一种聚类分析方法,对如蠓虫分类这种有监督的问题并不适用。1989 年,Kohonen 对向量量子化方法加以修改,提出 了一种适用于有监督情况的学习方法,称为学习向量量子化(Learning Vector Quantization),该方法可用于蠓虫分类问题。在有监督的情况下,学习样品的类别是事 先已知的,与此相应,每个输出单元所对应的类别也事先作了规定,但是,代表同一类 别的输出单元可以不止一个。 

前一种情况,修正和无监督的学习一致,权朝向样本方向移动一小段距离;后一种 则相反,权向离开样本方向移动,这样就减少了错误分类的机会。 对于上述的蠓虫分类问题,我们编写 Matlab 程序如下: 

clear 
p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90;
    1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; 
p2=[1.14,1.82;1.18,1.96;1.20,1.86;1.26,2.00  
    1.28,2.00;1.30,1.96]; 
p=[p1;p2]' 
pr=minmax(p) 
goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)] 
net = newlvq(pr,4,[0.6,0.4]) 
net = train(net,p,goal) 
Y = sim(net,p) 
x=[1.24 1.80;1.28 1.84;1.40 2.04]' 
sim(net,x) 

习 题 

1. 利用 BP 算法及 sigmoid 函数,研究以下各函数的逼近问题 

对每一函数要完成如下工作:

① 获取两组数据,一组作为训练集,一组作为测试集;

② 利用训练集训练一个单隐层的网络;用测试集检验训练结果,改变隐层单元数, 研究它对逼近效果的影响。 

2. 给定待拟合的曲线形式为

 

\large f\left ( x \right ) 上等间隔取 11 个点的数据,在此数据的输出值上加均值为 0,均方差  σ = 0.05 的正态分布噪声作为给定训练数据,用多项式拟合此函数,分别取多项式的阶次为 1, 3 和 11 阶,图示出拟合结果,并讨论多项式阶次对拟合结果的影响。 

 

参考资料:激活函数Relu 及 leakyRelu

 

  • 32
    点赞
  • 174
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值