常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似


常微分方程的解法求解系列博文

常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似

常微分方程的解法 (二): 欧拉(Euler)方法

常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法

常微分方程的解法 (四): Matlab 解法


目录

1 常微分方程的离散化  

数值解法

(i)用差商近似导数------差分方程初值问题

       (ii)用数值积分方法

      (iii)Taylor 多项式近似


建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并 加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线 性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以肯定得到这样的解, 而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的 方程如 \large \frac{\textup{dy}}{\textup{dx}}=y^{2}+x^{2} ,于是对于用微分方程解决实际问题来说,数值解法就是一个十 分重要的手段.

1 常微分方程的离散化

下面主要讨论一阶常微分方程的初值问题,其一般形式是

在下面的讨论中,我们总假定函数 f (x, y) 连续,且关于 y 满足李普希兹(Lipschitz)条 件,即存在常数 L ,使得

这样,由常微分方程理论知,初值问题(1)的解必定存在唯一。

数值解法

所谓数值解法,就是求问题(1)的解 y(x) 在若干点           

建立数值解法,首先要将微分方程离散化,一般采用以下几种方法:

(i)用差商近似导数------差分方程初值问题

需要说明的是,用不同的差商近似导数,将得到不同的计算公式。

(ii)用数值积分方法

将问题(1)的解表成积分形式,用数值积分方法离散化。例如,对微分方程两端 积分,得

右边的积分用矩形公式或梯形公式计算。

(iii)Taylor 多项式近似

以上三种方法都是将微分方程离散化的常用方法,每一类方法又可导出不同形式的 计算公式。其中的 Taylor 展开法,不仅可以得到求数值解的公式,而且容易估计截断 误差。


常微分方程的解法求解系列博文

常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似

常微分方程的解法 (二): 欧拉(Euler)方法

常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法

常微分方程的解法 (四): Matlab 解法


 

### 矢量控制中微分方程离散化方法 在矢量控制系统设计过程中,为了便于计算机实现和实时处理,通需要将连续时间系统的微分方程转换成离散形式。这过程称为离散化。 #### 、零阶保持器法 (ZOH) 最简单的离散化方法是采用零阶保持器(Zero Order Hold),它假设采样周期内的输入信号恒定不变。对于给定的连续传递函数 \( G(s) \),可以通过拉普拉斯变换与z变换之间的关系来获得对应的离散模型: \[ H(z)=\frac{1-e^{-sT}}{s}G(s)\Big|_{s=\frac{\ln z}{T}} \] 其中\( T \)表示采样间隔[^1]。 #### 二、欧拉前向离散化方法基于泰勒级数展开原理,在每个时刻点上用导数值代替变化率。具体来说,如果有个描述物理现象的阶线性系数微分方程: \[ y'(t)+ay(t)=bu(t), a,b∈R \] 那么其离散版本可以写作: ```matlab y[k+1]=y[k]+(b-a*y[k])*Ts; ``` 这里`Ts`代表采样时间[^2]。 #### 三、梯形积分法则(Tustin's Method) 相比于上述两种方式,梯形积分法则提供了更好的频率响应特性匹配度。该算法的核心在于使用平均斜率估计瞬时增长率,即: \[ s≈\frac{2(z-1)}{(z+1)T_s}\approx\frac{d}{dt}|_k+\frac{d}{dt}|_{k+1} \] 因此,当应用于状态空间表达式的矩阵A,B,C,D时,则有如下映射规则: \[ A_d=(I-\frac{T_s}{2}A)^{-1}(I+\frac{T_s}{2}A); B_d=(I-\frac{T_s}{2}A)^{-1}\cdot(\frac{T_s}{2})B;C_d=C;D_d=D \] 这种方法能够有效减少相位失真,并且适用于大多数实际控制场景中的动态系统建模需求[^3]。 #### 应用于矢量控制的具体案例 考虑到电机驱动领域见的同步旋转坐标系下的电流环路调节问题,往往涉及到复杂的非线性项以及交叉耦合效应。此时可借助MATLAB/Simulink平台内置的功能模块完成自动化离散化流程,比如ode45求解器可用于模拟不同工况下转矩波动情况及其对速度反馈的影响程度评估。 此外,针对某些特定场合还可以考虑引入更高级别的自适应滤波技术或是预测型控制器结构进步优化性能指标表现。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值