常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法


常微分方程的解法求解系列博文

常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似

常微分方程的解法 (二): 欧拉(Euler)方法

常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法

常微分方程的解法 (四): Matlab 解法


目录

§ 4 龙格—库塔(Runge—Kutta)方法

1 龙格—库塔方法的基本思想                                     确定系数以提高精度 

2 .  RK方法 :  4 阶龙格—库塔公式

5  线性多步法                                                            多步法的基本思想 、增量函数

§6 一阶微分方程组与高阶微分方程的数值解法

6.1 一阶微分方程组的数值解法                            6.2 高阶微分方程的数值解法

刚性方程组、Stiff 方程组        


 

§ 4 龙格—库塔(Runge—Kutta)方法

1 龙格—库塔方法的基本思想

确定系数以提高精度 

 

2 .  RK方法 :  4 阶龙格—库塔公式

要进一步提高精度,必须取更多的点,如取 4 点构造如下形式的公式:

这就是常用的 4 阶龙格—库塔方法(简称 RK 方法).

 

5  线性多步法

多步法的基本思想 、增量函数

§6 一阶微分方程组与高阶微分方程的数值解法

6.1 一阶微分方程组的数值解法

么问题(25)在[a,b] 上存在唯一解 y = y(x) 。 问题(25)与(1)形式上完全相同,故对初值问题(1)所建立的各种数值解法可 全部用于求解问题(25)。

6.2 高阶微分方程的数值解法

高阶微分方程的初值问题可以通过变量代换化为一阶微分方程组初值问题。

刚性方程组、Stiff 方程组

最后需要指出的是,在化学工程及自动控制等领域中,所涉及的常微分方程组初值 问题常常是所谓的“刚性”问题。具体地说,对一阶线性微分方程组

 


常微分方程的解法求解系列博文

常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似

常微分方程的解法 (二): 欧拉(Euler)方法

常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法

常微分方程的解法 (四): Matlab 解法


 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值