在本篇文章中,我们将介绍如何使用Nomic v1.5嵌入模型来处理文本数据,并展示如何构建一个简单的端到端RAG(Retrieval-Augmented Generation)管道。我们将使用OpenAI模型来进行生成步骤,并提供一个完整的示例代码。
安装
首先,我们需要安装必要的包:
%pip install -U llama-index llama-index-embeddings-nomic
设置API密钥
为了使用Nomic嵌入模型,我们需要设置API密钥:
nomic_api_key = "<NOMIC API KEY>"
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.nomic import NomicEmbedding
使用不同维度的Nomic嵌入模型
128维度
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings"