使用TokenCountingHandler来跟踪AI模型的Token使用情况

本文将介绍如何使用TokenCountingHandler来跟踪你的提示词、完成和嵌入的token使用情况。我们将使用LlamaIndex库,并演示如何通过代码进行设置和使用。

环境设置

首先,我们需要安装LlamaIndex库。如果你在Colab上运行此代码,请确保安装该库:

%pip install llama-index-llms-openai
!pip install llama-index

然后,我们进行一些必要的设置:

import os
import tiktoken
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings

# 设置OpenAI API密钥
os.environ["OPENAI_API_KEY"] = "sk-..."

# 初始化token计数器
token_counter = TokenCountingHandler(
    tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode
)

# 设置全局参数
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2)
Settings.callback_manager = CallbackManager([token_counter
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值