特征分解和PCA

1.线性代数基础

标量、向量、矩阵和Tensor

在这里插入图片描述

线性代数的正确打开方式

在这里插入图片描述

Ax=b的行视图

在这里插入图片描述

Ax=b的列视图

在这里插入图片描述

线性相关和线性无关

在这里插入图片描述

Span、基和子空间(subspace)

在这里插入图片描述

四个基本子空间

## 线性代数精华
在这里插入图片描述
在这里插入图片描述

四个基本子空间的关系

在这里插入图片描述

利用子空间重新看待线性方程组的解

在这里插入图片描述

可逆矩阵

在这里插入图片描述

2.特征分解

方针的特征值和特征向量

在这里插入图片描述

特征分解的性质

在这里插入图片描述

对称矩阵的特征分解

在这里插入图片描述
在这里插入图片描述

特征分解和子空间的关系

在这里插入图片描述

3.PCA

优化问题

在这里插入图片描述

PCA

在这里插入图片描述
在这里插入图片描述

PCA举例

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值