文章目录 1.线性代数基础标量、向量、矩阵和Tensor线性代数的正确打开方式Ax=b的行视图Ax=b的列视图线性相关和线性无关Span、基和子空间(subspace)四个基本子空间四个基本子空间的关系利用子空间重新看待线性方程组的解可逆矩阵 2.特征分解方针的特征值和特征向量特征分解的性质对称矩阵的特征分解特征分解和子空间的关系 3.PCA优化问题PCAPCA举例 1.线性代数基础 标量、向量、矩阵和Tensor 线性代数的正确打开方式 Ax=b的行视图 Ax=b的列视图 线性相关和线性无关 Span、基和子空间(subspace) 四个基本子空间 四个基本子空间的关系 利用子空间重新看待线性方程组的解 可逆矩阵 2.特征分解 方针的特征值和特征向量 特征分解的性质 对称矩阵的特征分解 特征分解和子空间的关系 3.PCA 优化问题 PCA PCA举例