机器学习算法实现(1):逻辑回归实现二分类

【系列开头】开这个系列是因为最近学习某些算法纸上谈兵太久,算法流程背的再熟,没有实现过就没法真正的理解算法的细节。这个系列要实现算法的顺序为逻辑回归、决策树(CART)、AdaBoost、GBDT。其他算法根据后续学习情况进行添加。

关于逻辑回归的原理这里不再叙述,书上都有,但要深入理解不是很容易。学习三要素:模型、策略、算法。首先逻辑回归要解决的是分类问题,他是怎么解决呢?对应于抽象的学习三要素,一句话概括:逻辑斯蒂回归模型为参数化的逻辑斯蒂分布(其对数几率模型是线性函数)来表示的条件概率。通过梯度下降法极大化似然函数,求得参数w,进而求得模型。

下面通过一个iris数据集的小例子,来实现一个逻辑回归的二分类模型。

  1. 三方库导入和数据获取
from sklearn.datasets import load_iris
import numpy as np

#加载数据集
iris = load_iris()
X_train = iris.data[:100] #前100条数据,分成两个类别。
y_train = iris.target[:100]
  1. 几个工具函数的构建
    这里只需要一个sigmoid函数。
def sigmoid_activation(result):
    final_result = 1/(1+np.exp(-result))
    return final_result
  1. 模型学习

模型是一个线性函数,我们需要学习的参数是w和b。采用极大似然估计(极小化似然函数)的方法,学习参数w和b的值。

def model_optimize(w, b, X, y)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一个简单的逻辑回归分类算法的 Python 代码示例: ```python import numpy as np class LogisticRegression: def __init__(self, learning_rate=0.01, num_iterations=100000, fit_intercept=True): self.learning_rate = learning_rate self.num_iterations = num_iterations self.fit_intercept = fit_intercept def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def fit(self, X, y): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) # 初始化权重 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iterations): z = np.dot(X, self.theta) h = self.sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.theta -= self.learning_rate * gradient def predict_prob(self, X): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) return self.sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 这里我们定义了一个 `LogisticRegression` 类,它有以下几个方法: - `__init__`:初始化逻辑回归模型的超参数,包括学习率、迭代次数和是否拟合截距项。 - `sigmoid`:sigmoid 函数,用于将线性函数的输出转换为概率值。 - `fit`:训练模型的方法,使用梯度下降算法来更新权重。 - `predict_prob`:给定输入数据,返回模型预测的类别概率。 - `predict`:给定输入数据和阈值,返回模型预测的类别。 在使用时,首先需要创建一个 `LogisticRegression` 类的实例,然后调用 `fit` 方法来训练模型。训练完成后,可以使用 `predict_prob` 方法来预测类别的概率,或使用 `predict` 方法来预测具体的类别。 ### 回答2: 逻辑回归是一种常用的机器学习算法,用于解决二分类问题。其基本原理是利用线性回归模型的预测结果通过一个sigmoid函数转换成0或1的概率值进行分类预测。 以下是一个简单的机器学习逻辑回归分类算法代码: 1. 导入所需的库: ```python import numpy as np from sklearn.linear_model import LogisticRegression ``` 2. 准备数据: ```python X = np.array([[x1, x2], [x1, x2], ..., [x1, x2]]) # 特征矩阵,每行代表一个样本的特征向量 y = np.array([y1, y2, ..., yn]) # 标签向量,表示每个样本的类别 ``` 3. 创建逻辑回归模型对象: ```python model = LogisticRegression() ``` 4. 使用训练数据进行模型训练: ```python model.fit(X, y) ``` 5. 对新样本进行分类预测: ```python new_sample = np.array([x1, x2]) # 待预测的新样本的特征向量 predicted_class = model.predict([new_sample]) # 预测样本的类别 ``` 以上是一个简单的机器学习逻辑回归分类算法的代码实现。要注意的是,在实际应用中,可能需要进行特征工程、数据预处理、模型评估等步骤来提高分类效果。此外,可以通过调整模型的参数,如正则化系数等,来优化模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值