Hugging Face模型国内镜像HF Mirror下载

直接下载 Hugging Face

开启梯子,一看好几个g...

我们寻找国内镜像。

访问HF-Mirror

继续上面搜索。

继续点击跟踪路径。

拼出路径。

https://hf-mirror.com/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensors

如果网络足够好,定位资源直接下也可是可以的。

https://hf-mirror.com/Comfy-Org/Wan_2.1_ComfyUI_repackaged

我这里利用cur 来拉取文件。

先安装虚拟环境。

conda create --prefix D:\myenv python=3.10

再激活。

conda activate D:/myenv

检查并创建本地目录

mkdir D:\ComfyUI\models\text_encoders

将镜像资源拉取刚刚创建的文件下。

curl -o D:\ComfyUI\models\text_encoders\umt5_xxl_fp8_e4m3fn_scaled.safetensors https://hf-mirror.com/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors

测试要比直接网络下载要快。

### 如何从Hugging Face下载模型文件 #### 使用官方客户端库自动下载 为了简化流程并确保兼容性,推荐使用Hugging Face提供的Python库`transformers`来获取预训练模型及其配套资源。安装此库之后,在脚本里指定所需模型名称即可实现自动化加载过程[^2]。 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 这段代码不仅能够处理模型本身的下载工作,还会同步拉取必要的分词工具及相关配置文档,比如`config.json`, `vocab.txt`以及可能存在的额外组件如`special_tokens_map.json`等[^4]。 #### 手动下载方法 对于那些希望完全掌控下载细节或是遇到网络问题的情况,则可以选择手动方式: 访问[Hugging Face模型页面](https://huggingface.co/models),定位至目标模型条目下(例如`bert-uncased`),点击进入详情页后可以看到一系列可供单独选取的文件链接。用户可以根据实际需求挑选特定版本或组成部分进行保存,并按照指示将其放置于本地缓存目录内(通常是`~/.cache/huggingface/transformers`)[^1]。 如果是在Linux环境下遭遇下载障碍,可以通过设定环境变量指向备用镜像站点的方法绕过原生源站限制。执行如下指令可更改默认请求地址为国内加速节点,从而提高成功率和速度[^5]: ```bash export HF_ENDPOINT="https://hf-mirror.com" echo $HF_ENDPOINT # 验证设置是否成功应用 ``` 需要注意的是上述变更仅限于当前shell session期间有效;若要持久化修改则需进一步编辑`.bashrc`或其他初始化脚本文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值