利用反卷积执行图像去模糊
0. 前言
我们已经知道可以使用低通滤波器执行模糊操作,并减弱图像中较高频域。模糊操作(例如,高斯模糊)是线性的,在数学意义上是可逆的,但在实践中,该问题的逆过程计算起来非常困难。在本节中,我们将学习如何解决以下两个问题:
- 如何通过对图像的拉普拉斯方差进行简单的阈值处理来检测图像是否模糊
- 如何使用
SimpleItk和scikit-image库函数的反卷积算法来消除图像中的模糊
1. 图像模糊检测
1.1 拉普拉斯 (Laplacian) 方差阈值
在本节中,我们将学习如何通过使用 OpenCV 库计算图像的拉普拉斯 (Laplacian) 方差阈值来检测图像是否模糊。执行模糊检测的步骤如下:
- 如果图像足够清晰,则拉普拉斯运算将在图像中检测水平和垂直边缘,以获得输出图像在给定范围内的方差
- 相反,如果图像相对模糊,则拉普拉斯运算在图像中并不能检测到足够的细节,从而导致输出方差小于给定阈值
该过程对于阈值非常敏感,因此需要选择合适的阈值。
本文介绍了如何检测图像模糊并使用Python的SimpleITK和scikit-image库执行非盲去模糊。通过拉普拉斯方差阈值检测图像模糊,然后应用反卷积滤波器恢复图像清晰度,包括逆滤波、Wiener滤波和Richardson-Lucy算法。
订阅专栏 解锁全文
839





