Python图像处理【11】利用反卷积执行图像去模糊

本文介绍了如何检测图像模糊并使用Python的SimpleITK和scikit-image库执行非盲去模糊。通过拉普拉斯方差阈值检测图像模糊,然后应用反卷积滤波器恢复图像清晰度,包括逆滤波、Wiener滤波和Richardson-Lucy算法。

0. 前言

我们已经知道可以使用低通滤波器执行模糊操作,并减弱图像中较高频域。模糊操作(例如,高斯模糊)是线性的,在数学意义上是可逆的,但在实践中,该问题的逆过程计算起来非常困难。在本节中,我们将学习如何解决以下两个问题:

  • 如何通过对图像的拉普拉斯方差进行简单的阈值处理来检测图像是否模糊
  • 如何使用 SimpleItkscikit-image 库函数的反卷积算法来消除图像中的模糊

1. 图像模糊检测

1.1 拉普拉斯 (Laplacian) 方差阈值

在本节中,我们将学习如何通过使用 OpenCV 库计算图像的拉普拉斯 (Laplacian) 方差阈值来检测图像是否模糊。执行模糊检测的步骤如下:

  • 如果图像足够清晰,则拉普拉斯运算将在图像中检测水平和垂直边缘,以获得输出图像在给定范围内的方差
  • 相反,如果图像相对模糊,则拉普拉斯运算在图像中并不能检测到足够的细节,从而导致输出方差小于给定阈值

该过程对于阈值非常敏感,因此需要选择合适的阈值。

1.2 使用 OpenCV 执行模糊检测

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI technophile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值