CUDA Samples: matrix multiplication(C = A * B)

以下CUDA sample是分别用C++和CUDA实现的两矩阵相乘运算code即C= A*B,CUDA中包含了两种核函数的实现方法,第一种方法来自于CUDA Samples\v8.0\0_Simple\matrixMul,第二种采用普通的方法实现,第一种方法较快,但有些复杂,速度上约为第二种的1.3倍,并对其中使用到的CUDA函数进行了解说,各个文件内容如下:

funset.cpp:

 

 
  1. #include "funset.hpp"

  2. #include <random>

  3. #include <iostream>

  4. #include <vector>

  5. #include <memory>

  6. #include <string>

  7. #include <algorithm>

  8. #include "common.hpp"

  9. #include <opencv2/opencv.hpp>

  10.  
  11. int test_matrix_mul()

  12. {

  13. // Matrix multiplication: C = A * B

  14. // 矩阵A、B的宽、高应是32的整数倍

  15. const int rowsA{ 352 }, colsA{ 672 }, rowsB = colsA, colsB{ 384 };

  16. std::unique_ptr<float[]> A(new float[colsA*rowsA]);

  17. std::unique_ptr<float[]> B(new float[colsB*rowsB]);

  18. std::unique_ptr<float[]> C1(new float[rowsA*colsB]);

  19. std::unique_ptr<float[]> C2(new float[rowsA*colsB]);

  20.  
  21. generator_random_number(A.get(), colsA*rowsA, -1.f, 1.f);

  22. generator_random_number(B.get(), colsB*rowsB, -1.f, 1.f);

  23.  
  24. float elapsed_time1{ 0.f }, elapsed_time2{ 0.f }; // milliseconds

  25. int ret = matrix_mul_cpu(A.get(), B.get(), C1.get(), colsA, rowsA, colsB, rowsB, &elapsed_time1);

  26. if (ret != 0) PRINT_ERROR_INFO(matrix_mul_cpu);

  27.  
  28. ret = matrix_mul_gpu(A.get(), B.get(), C2.get(), colsA, rowsA, colsB, rowsB, &elapsed_time2);

  29. if (ret != 0) PRINT_ERROR_INFO(matrix_mul_gpu);

  30.  
  31. int count{ 0 };

  32. for (int i = 0; i < rowsA*colsB; ++i) {

  33. if (count > 100) return -1;

  34. if (fabs(C1[i] - C2[i]) > EPS_) {

  35. fprintf(stderr, "Result verification failed at element %d, C1: %f, C2: %f\n",

  36. i, C1[i], C2[i]);

  37. ++count;

  38. }

  39. }

  40.  
  41. fprintf(stderr, "test matrix mul: cpu run time: %f ms, gpu run time: %f ms\n", elapsed_time1, elapsed_time2);

  42.  
  43. return 0;

  44. }

matrix_mul.cpp:

 

 
  1. #include "funset.hpp"

  2. #include <vector>

  3. #include <chrono>

  4. #include "common.hpp"

  5.  
  6. int matrix_mul_cpu(const float* A, const float* B, float* C, int colsA, int rowsA, int colsB, int rowsB, float* elapsed_time)

  7. {

  8. auto start = std::chrono::steady_clock::now();

  9.  
  10. CHECK(colsA == rowsB);

  11.  
  12. for (int y = 0; y < rowsA; ++y) {

  13. for (int x = 0; x < colsB; ++x) {

  14. float sum{ 0.f };

  15. for (int t = 0; t < colsA; ++t) {

  16. sum += A[y * colsA + t] * B[t * colsB + x];

  17. }

  18.  
  19. C[y * colsB + x] = sum;

  20. }

  21. }

  22.  
  23. auto end = std::chrono::steady_clock::now();

  24. auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start);

  25. *elapsed_time = duration.count() * 1.0e-6;

  26.  
  27. return 0;

  28. }

matrix_mul.cu:

 

 
  1. #include "funset.hpp"

  2. #include <iostream>

  3. #include <cuda_runtime.h> // For the CUDA runtime routines (prefixed with "cuda_")

  4. #include <device_launch_parameters.h>

  5. #include "common.hpp"

  6.  
  7. // reference: C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\0_Simple\matrixMul

  8. /* __global__: 函数类型限定符;在设备上运行;在主机端调用,计算能力3.2及以上可以在

  9. 设备端调用;声明的函数的返回值必须是void类型;对此类型函数的调用是异步的,即在

  10. 设备完全完成它的运行之前就返回了;对此类型函数的调用必须指定执行配置,即用于在

  11. 设备上执行函数时的grid和block的维度,以及相关的流(即插入<<< >>>运算符);

  12. a kernel,表示此函数为内核函数(运行在GPU上的CUDA并行计算函数称为kernel(内核函

  13. 数),内核函数必须通过__global__函数类型限定符定义);*/

  14. template <int BLOCK_SIZE>

  15. __global__ static void matrix_mul(const float* A, const float* B, float* C, int wA, int wB)

  16. {

  17. /* gridDim: 内置变量,用于描述线程网格的维度,对于所有线程块来说,这个

  18. 变量是一个常数,用来保存线程格每一维的大小,即每个线程格中线程块的数量.

  19. 一个grid最多只有二维,为dim3类型;

  20. blockDim: 内置变量,用于说明每个block的维度与尺寸.为dim3类型,包含

  21. 了block在三个维度上的尺寸信息;对于所有线程块来说,这个变量是一个常数,

  22. 保存的是线程块中每一维的线程数量;

  23. blockIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程块的索引;用

  24. 于说明当前thread所在的block在整个grid中的位置,blockIdx.x取值范围是

  25. [0,gridDim.x-1],blockIdx.y取值范围是[0, gridDim.y-1].为uint3类型,

  26. 包含了一个block在grid中各个维度上的索引信息;

  27. threadIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程索引;用于

  28. 说明当前thread在block中的位置;如果线程是一维的可获取threadIdx.x,如果

  29. 是二维的还可获取threadIdx.y,如果是三维的还可获取threadIdx.z;为uint3类

  30. 型,包含了一个thread在block中各个维度的索引信息 */

  31. // Block index

  32. int bx = blockIdx.x;

  33. int by = blockIdx.y;

  34. // Thread index

  35. int tx = threadIdx.x;

  36. int ty = threadIdx.y;

  37.  
  38. // Index of the first sub-matrix of A processed by the block

  39. int aBegin = wA * BLOCK_SIZE * by;

  40. // Index of the last sub-matrix of A processed by the block

  41. int aEnd = aBegin + wA - 1;

  42. // Step size used to iterate through the sub-matrices of A

  43. int aStep = BLOCK_SIZE;

  44. // Index of the first sub-matrix of B processed by the block

  45. int bBegin = BLOCK_SIZE * bx;

  46. // Step size used to iterate through the sub-matrices of B

  47. int bStep = BLOCK_SIZE * wB;

  48. // Csub is used to store the element of the block sub-matrix that is computed by the thread

  49. float Csub = 0;

  50.  
  51. // Loop over all the sub-matrices of A and B required to compute the block sub-matrix

  52. for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

  53. /* __shared__: 变量类型限定符;使用__shared__限定符,或者与__device__限

  54. 定符连用,此时声明的变量位于block中的共享存储器空间中,与block具有相同

  55. 的生命周期,仅可通过block内的所有线程访问;__shared__和__constant__变量

  56. 默认为是静态存储;在__shared__前可以加extern关键字,但表示的是变量大小

  57. 由执行参数确定;__shared__变量在声明时不能初始化;可以将CUDA C的关键字

  58. __shared__添加到变量声明中,这将使这个变量驻留在共享内存中;CUDA C编译

  59. 器对共享内存中的变量与普通变量将分别采取不同的处理方式 */

  60. // Declaration of the shared memory array As used to store the sub-matrix of A

  61. __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

  62. // Declaration of the shared memory array Bs used to store the sub-matrix of B

  63. __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

  64.  
  65. // Load the matrices from device memory to shared memory; each thread loads one element of each matrix

  66. As[ty][tx] = A[a + wA * ty + tx];

  67. Bs[ty][tx] = B[b + wB * ty + tx];

  68.  
  69. /* __syncthreads: 对线程块中的线程进行同步;CUDA架构将确保,除非线程块

  70. 中的每个线程都执行了__syncthreads(),否则没有任何线程能执行

  71. __syncthreads()之后的指令;在同一个block中的线程通过共享存储器(shared

  72. memory)交换数据,并通过栅栏同步(可以在kernel函数中需要同步的位置调用

  73. __syncthreads()函数)保证线程间能够正确地共享数据;使用clock()函数计时,

  74. 在内核函数中要测量的一段代码的开始和结束的位置分别调用一次clock()函数,

  75. 并将结果记录下来。由于调用__syncthreads()函数后,一个block中的所有

  76. thread需要的时间是相同的,因此只需要记录每个block执行需要的时间就行了,

  77. 而不需要记录每个thread的时间 */

  78. // Synchronize to make sure the matrices are loaded

  79. __syncthreads();

  80.  
  81. /* reference:

  82. https://devblogs.nvidia.com/parallelforall/new-compiler-features-cuda-8/

  83. https://stackoverflow.com/questions/22278631/what-does-pragma-unroll-do-exactly-does-it-affect-the-number-of-threads/22279341

  84. 编译器默认情况下将循环展开小的次数,#pragma unroll能够指定循环

  85. 以多少次展开(程序员必须保证按这个展开是正确的),pragma unroll 后

  86. 必须紧接着处理的循环,可选择在其后接一个数字,指定必须展开多少次循环,

  87. #pragma unroll 1 表示禁止编译器将循环展开。如果没指定次数,对于常数

  88. 次的循环,循环将完全展开,对于不确定次数的循环,循环将不会展开。

  89. */

  90. #pragma unroll

  91. // Multiply the two matrices together; each thread computes one element of the block sub-matrix

  92. for (int k = 0; k < BLOCK_SIZE; ++k) {

  93. Csub += As[ty][k] * Bs[k][tx];

  94. }

  95.  
  96. // Synchronize to make sure that the preceding computation is done before loading two new

  97. // sub-matrices of A and B in the next iteration

  98. __syncthreads();

  99. }

  100.  
  101. // Write the block sub-matrix to device memory; each thread writes one element

  102. int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

  103. C[c + wB * ty + tx] = Csub;

  104. }

  105.  
  106. __global__ static void matrix_mul(const float* A, const float* B, float* C, int colsA, int rowsA, int colsB, int rowsB)

  107. {

  108. int x = threadIdx.x + blockIdx.x * blockDim.x;

  109. int y = threadIdx.y + blockIdx.y * blockDim.y;

  110. int offset = x + y * blockDim.x * gridDim.x;

  111.  
  112. float sum{ 0.f };

  113. for (int t = 0; t < colsA; ++t) {

  114. sum += A[y * colsA + t] * B[t * colsB + x];

  115. }

  116.  
  117. C[offset] = sum;

  118. }

  119.  
  120. int matrix_mul_gpu(const float* A, const float* B, float* C, int colsA, int rowsA, int colsB, int rowsB, float* elapsed_time)

  121. {

  122. CHECK(colsA == rowsB);

  123.  
  124. /* cudaEvent_t: CUDA event types,结构体类型, CUDA事件,用于测量GPU在某

  125. 个任务上花费的时间,CUDA中的事件本质上是一个GPU时间戳,由于CUDA事件是在

  126. GPU上实现的,因此它们不适于对同时包含设备代码和主机代码的混合代码计时*/

  127. cudaEvent_t start, stop;

  128. // cudaEventCreate: 创建一个事件对象,异步启动

  129. cudaEventCreate(&start);

  130. cudaEventCreate(&stop);

  131. // cudaEventRecord: 记录一个事件,异步启动,start记录起始时间

  132. cudaEventRecord(start, 0);

  133.  
  134. size_t lengthA{ colsA * rowsA * sizeof(float) }, lengthB{ colsB * rowsB * sizeof(float) };

  135. size_t lengthC{ rowsA * colsB * sizeof(float) };

  136. float *d_A{ nullptr }, *d_B{ nullptr }, *d_C{ nullptr };

  137.  
  138. // cudaMalloc: 在设备端分配内存

  139. cudaMalloc(&d_A, lengthA);

  140. cudaMalloc(&d_B, lengthB);

  141. cudaMalloc(&d_C, lengthC);

  142.  
  143. /* cudaMemcpy: 在主机端和设备端拷贝数据,此函数第四个参数仅能是下面之一:

  144. (1). cudaMemcpyHostToHost: 拷贝数据从主机端到主机端

  145. (2). cudaMemcpyHostToDevice: 拷贝数据从主机端到设备端

  146. (3). cudaMemcpyDeviceToHost: 拷贝数据从设备端到主机端

  147. (4). cudaMemcpyDeviceToDevice: 拷贝数据从设备端到设备端

  148. (5). cudaMemcpyDefault: 从指针值自动推断拷贝数据方向,需要支持

  149. 统一虚拟寻址(CUDA6.0及以上版本)

  150. cudaMemcpy函数对于主机是同步的 */

  151. cudaMemcpy(d_A, A, lengthA, cudaMemcpyHostToDevice);

  152. cudaMemcpy(d_B, B, lengthB, cudaMemcpyHostToDevice);

  153. //cudaMemcpy(d_C, C, lengthC, cudaMemcpyHostToDevice);

  154.  
  155. const int block_size{ 32 };

  156. /* dim3: 基于uint3定义的内置矢量类型,相当于由3个unsigned int类型组成的

  157. 结构体,可表示一个三维数组,在定义dim3类型变量时,凡是没有赋值的元素都

  158. 会被赋予默认值1 */

  159. dim3 dimsA(colsA, rowsA, 1);

  160. dim3 dimsB(colsB, rowsB, 1);

  161. CHECK(dimsA.x == dimsB.y);

  162. //fprintf(stderr, "MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y, dimsB.x, dimsB.y);

  163.  
  164. dim3 threads(block_size, block_size);

  165. dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y);

  166.  
  167. /* <<< >>>: 为CUDA引入的运算符,指定线程网格和线程块维度等,传递执行参

  168. 数给CUDA编译器和运行时系统,用于说明内核函数中的线程数量,以及线程是如何

  169. 组织的;尖括号中这些参数并不是传递给设备代码的参数,而是告诉运行时如何

  170. 启动设备代码,传递给设备代码本身的参数是放在圆括号中传递的,就像标准的函

  171. 数调用一样;不同计算能力的设备对线程的总数和组织方式有不同的约束;必须

  172. 先为kernel中用到的数组或变量分配好足够的空间,再调用kernel函数,否则在

  173. GPU计算时会发生错误,例如越界等;

  174. 使用运行时API时,需要在调用的内核函数名与参数列表直接以<<<Dg,Db,Ns,S>>>

  175. 的形式设置执行配置,其中:Dg是一个dim3型变量,用于设置grid的维度和各个

  176. 维度上的尺寸.设置好Dg后,grid中将有Dg.x*Dg.y个block,Dg.z必须为1;Db是

  177. 一个dim3型变量,用于设置block的维度和各个维度上的尺寸.设置好Db后,每个

  178. block中将有Db.x*Db.y*Db.z个thread;Ns是一个size_t型变量,指定各块为此调

  179. 用动态分配的共享存储器大小,这些动态分配的存储器可供声明为外部数组

  180. (extern __shared__)的其他任何变量使用;Ns是一个可选参数,默认值为0;S为

  181. cudaStream_t类型,用于设置与内核函数关联的流.S是一个可选参数,默认值0. */

  182. matrix_mul<block_size> <<< grid, threads >>>(d_A, d_B, d_C, dimsA.x, dimsB.x); // 运行较快

  183. //matrix_mul<< < grid, threads >> >(d_A, d_B, d_C, colsA, rowsA, colsB, rowsB);

  184.  
  185. /* cudaDeviceSynchronize: kernel的启动是异步的, 为了定位它是否出错, 一

  186. 般需要加上cudaDeviceSynchronize函数进行同步; 将会一直处于阻塞状态,直到

  187. 前面所有请求的任务已经被全部执行完毕,如果前面执行的某个任务失败,将会

  188. 返回一个错误;当程序中有多个流,并且流之间在某一点需要通信时,那就必须

  189. 在这一点处加上同步的语句,即cudaDeviceSynchronize;异步启动

  190. reference: https://stackoverflow.com/questions/11888772/when-to-call-cudadevicesynchronize */

  191. //cudaDeviceSynchronize();

  192.  
  193. cudaMemcpy(C, d_C, lengthC, cudaMemcpyDeviceToHost);

  194. // cudaFree: 释放设备上由cudaMalloc函数分配的内存

  195. cudaFree(d_A);

  196. cudaFree(d_B);

  197. cudaFree(d_C);

  198.  
  199. // cudaEventRecord: 记录一个事件,异步启动,stop记录结束时间

  200. cudaEventRecord(stop, 0);

  201. // cudaEventSynchronize: 事件同步,等待一个事件完成,异步启动

  202. cudaEventSynchronize(stop);

  203. // cudaEventElapseTime: 计算两个事件之间经历的时间,单位为毫秒,异步启动

  204. cudaEventElapsedTime(elapsed_time, start, stop);

  205. // cudaEventDestroy: 销毁事件对象,异步启动

  206. cudaEventDestroy(start);

  207. cudaEventDestroy(stop);

  208.  
  209. return 0;

  210. }

执行结果如下:

GitHubhttps://github.com/fengbingchun/CUDA_Test

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值