图像处理算法工程师面试题

来源:https://blog.csdn.net/ali_dongdong/article/details/74518607

图像基础知识:

1.常用的图像空间。

2.简述你熟悉的聚类算法并说明其优缺点。

3.请描述以下任一概念:SIFT/SURF  LDA/PCA

4.请说出使用过的分类器和实现原理。

5. Random Forest的随机性表现在哪里。

6. Graph-cut的基本原理和应用。

7. GMM的基本原理和应用。

8.用具体算法举例说明监督学习和非监督学习的区别。

 

数学知识:

1.贝叶斯全概率公式题。

2.最小二乘拟合的公式推导和代码实现。

3.数论or组合数学题。

 

白板编程:

1.图的遍历

   思路:深度搜索DFS和广度搜搜BFS

2.网格搜索:给一张二值化图片,用1~n标记不同的连通域。

   思路:可以采用最简单的四领域搜索。

3.代码实现HSV图的直方图表示,已知H bins=8 S bins=4 V bins=2 

 

开放问答:

1.怎样在一张街拍图像中识别明星的衣着服饰信息?

2.上衣纯色,裙子花色,怎样做区分?

3.怎样判断一张广告图片中是否有文字信息?是否用到OCR技术?怎样应用?

4.给一张二值化图片(包含一个正方形),怎样识别图片中的正方形?如果图片污损严重,怎样识别并恢复?

5.简述图像识别在移动互联网中的应用。

根据提供的引用内容,图像识别算法工程师面试题可能涉及以下几个方面: 1. 图像处理和计算机视觉基础知识:面试官可能会问到图像处理和计算机视觉的基本概念、常用算法和技术,例如图像滤波、边缘检测、特征提取等。 2. 目标检测和识别算法:面试官可能会询问你对目标检测和识别算法的了解,例如常用的目标检测算法(如RCNN、YOLO等)和人脸识别算法(如Eigenfaces、LBPH等)。 3. 深度学习和神经网络:面试官可能会问到深度学习和神经网络在图像识别中的应用,例如卷积神经网络(CNN)的原理和常见的网络架构(如AlexNet、VGG、ResNet等)。 4. 数据集和评估指标:面试官可能会询问你在图像识别任务中使用过的数据集和评估指标,例如常用的图像数据集(如ImageNet、COCO等)和评估指标(如准确率、召回率、F1-score等)。 5. 实际项目经验:面试官可能会要求你分享你在图像识别算法方面的实际项目经验,例如你在某个项目中使用了哪些算法和技术,遇到了哪些挑战,如何解决等。 以下是一个范例回答: 图像识别算法工程师面试题通常涉及以下几个方面: 1. 图像处理和计算机视觉基础知识:了解图像处理和计算机视觉的基本概念和常用算法,如图像滤波、边缘检测、特征提取等。 2. 目标检测和识别算法:熟悉常用的目标检测算法,如RCNN、YOLO等,以及人脸识别算法,如Eigenfaces、LBPH等。 3. 深度学习和神经网络:了解深度学习和神经网络在图像识别中的应用,如卷积神经网络(CNN)的原理和常见的网络架构,如AlexNet、VGG、ResNet等。 4. 数据集和评估指标:熟悉常用的图像数据集,如ImageNet、COCO等,以及评估指标,如准确率、召回率、F1-score等。 5. 实际项目经验:分享在图像识别算法方面的实际项目经验,包括使用的算法和技术,遇到的挑战以及解决方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值