最优化运输问题

运输问题

问题一:运输问题
模型所求问题都是以产销平衡为前提的条件下进行的,但是在实际问题中绝大多数问题往往都是产销不平衡的,因此就需要将产销不平衡问题转化为产销平衡问题。
当产大于销时:
只需要假想增加一个销地(可以看做为一个存储地),该城销售量为产大于销的部分,而在单位运价表中从个产地销往此假想销售地的运价为0,由此转化为一个产销平衡问题。
当销大于产时:
可以假想增加一个产地,该产地的产量为实际需求量大于实际产量部分,而从该假想产地到个销售地的运价为0,由此转化为一个产销平衡问题。

此问题为不平衡问题,实际3个产地产量大于4个城市需求,此处解决用将产销不平衡问题转化为产销平衡问题,当产大于销时,只需要假想增加一个销地(即此处增加一个销售城市)可以看做为一个存储地,该城销售量为产大于销的部分,而在单位运价表中从个产地销往此地的运价为0,由此转化为一个产销平衡问题
%目标函数
%f=4x1+3x2+2x3+3x4+2x5+6x6+1x7+3x8+3x9+2x10+4x11+2x12
%约束函数
% x1+x2+x3+x4<=1000
% x5+x6+x7+x8<=800
% x9+x10+x11+x12<=1500
% x1+x5+x9=500
% x2+x6+x10=600
% x3+x7+x11=450
% x4+x8+x12=850

f=[4 3 2 3;
2 6 1 3;
3 2 4 2];
Aeq=[1 0 0 0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 0 0 0 1];
beq=[500;600;450;850];

A=[ 1 1 1 1 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1];
b=[1000;800;1500];
lb=[0 0 0 0 0 0 0 0 0 0 0 0];
%返回目标函数最优解X,和在x处的值 [xm,fm,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,[]);

从输出结果得到运输矩阵xm:
122.502232750374
599.999999999439
78.1591887055801
3.50208366863350e-10
1.14928966639242e-10
3.67045235730775e-10
187.929207797288
612.070792201837
377.497767249511
1.93142864386448e-10
183.911603497132
237.929207797813

Fm=5.450000000001648e+03
输出运输矩阵为:
122.5 600 78.2 0
[Zij]= 0 0 187.9 612.1
377.5 0 183.9 237.9
最有运输费用为fm=5450单位

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值