AMD AI PC配置Ryzen AI开发环境

本文介绍了如何在AMD的UM790pro微型主机上配置RyzenAI开发环境,包括安装IPU驱动、启用IPU功能、安装依赖(如VisualStudio2019、CMake、Anaconda等)以及如何成功安装和测试RyzenAI。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非常感谢“amd pervasive ai 开发者挑战赛”提供的这次机会,能够让我有机会接触到AMD的AI PC,并使用它进行相关AI功能的开发。下面首先先介绍在AI PC上配置相关开发环境。

UM790 pro开箱

这次比赛中AMD提供的是UM790 pro微型主机。其搭载了AMD Ryzen™ 9 7940HS处理器,其具有8核16线程,并且带有IPU,能够更好地支持AI应用。

具体参数如下:
在这里插入图片描述

安装IPU驱动

UM790应该是自带了IPU的驱动,但是如果不确定的话也可以重新安装一下。目前我了解到的安装途径有两个,一个是AMD Ryzen AI网站教程中提到的下载链接,还有一个是minisforum官网中UM790支持中提供的驱动工具。

AMD Ryzen AI

下载链接
在这里插入图片描述

minisforum官网

下载链接
在这里插入图片描述

启用IPU

在安装完驱动后,我发现我的电脑上的设备管理器中还是没有IPU这个设备。经过查找资料发现是由于BIOS中未启用IPU功能。因此接下来我们进入BIOS中将IPU功能打开。
首先开机时按住delete键,进入BIOS。
之后依次点击Setup->Advanced->CPU configuration->启用IPU。启用完成后,点击保存,重启后即可在设备管理器的系统设备中看到AMD IPU Device的身影了。
在这里插入图片描述

安装依赖

根据AMD官方给的教程,如要使用RyzenAI进行开发,还需要安装一定的依赖环境,具体如下:
在这里插入图片描述
具体的安装方法就不详细阐述了,百度上都有,只要确保版本符合要求即可。特别注意Visual Studio只能安装2019版本的,不可安装最新的2022版本,否则在之后配置Ryzen AI时会环境检测不通过。各个依赖的网站链接我已放到下方。

相关链接

Visual Studio 2019
cmake
Anaconda
python

安装Ryzen AI

在这里插入图片描述
首先我们需要确保我们的环境依赖都已安装完成并添加进环境变量中,具体如下:
在这里插入图片描述

之后下载Ryzen AI压缩包,解压后使用命令行打开。注意解压得到的文件夹需要放在恰当的地方,避免误删除。据AMD介绍,在之后进行模型推理的时候还需要用到

运行如下命令即可进行安装

.\install.bat

如果安装失败,会提示哪个依赖没有满足,需要检查或重新安装相关依赖。如下图,由于我安装的是Visual Studio 2022版本,而Ryzen AI只支持2019版本,所以检测不到。只需要重新安装Visual Studio 2019即可。
在这里插入图片描述

依赖环境问题解决后重新进行安装,安装结束后会提示你conda虚拟环境的名称,我的是ryzenai-1.1-20240418-202012。这个环境名称需要牢记,后面需要用到。
在这里插入图片描述

之后不能直接执行conda activate命令,否则会报错。需要先执行conda init,并重启命令行。

CondaError: Run 'conda init' before 'conda activate'

在这里插入图片描述

重新执行如下命令,就可以进入到刚才创建的虚拟环境中了。

conda activate ryzenai-1.1-20240418-202012

在这里插入图片描述

成功进入虚拟环境后,我们测试是否安装成功。我们执行如下命令,进入到quicktest文件夹中,运行quicktest.py文件进行测试。

cd ryzen-ai-sw-1.1\quicktest
python quicktest.py

如果安装成功,就会出现红框内的内容。
在这里插入图片描述

### 学习AIGC所需电脑硬件配置建议 对于希望深入学习和实践AIGC(生成式人工智能)技术的人来说,合适的计算机硬件配置至关重要。这不仅能提高工作效率,还能确保各种复杂算法得以顺利执行。 #### 基础配置要求 为了满足基本的学习需求,一台具备良好性能的基础PC应当至少配备如下组件: - **处理器 (CPU)**:Intel i7 或 AMD Ryzen 7 及以上级别的多核处理器[^1]。 - **内存 (RAM)**:最低16GB DDR4 RAM;如果可能的话,推荐32GB甚至更高容量以应对大型模型训练的需求。 - **图形处理单元 (GPU)**:NVIDIA GeForce RTX 系列显卡,特别是RTX 3060及以上型号,因为这些GPU内置了Tensor Cores专门用于加速机器学习计算任务。 #### 高级配置考量 当涉及到更加复杂的项目或是计划从事专业的研究工作时,则需要进一步增强系统的整体表现力: - **存储空间**:快速读写的SSD硬盘必不可少,建议采用NVMe M.2接口的产品,并预留足够的可用磁盘空间来保存庞大的数据集与预训练模型文件。 - **网络连接速度**:稳定的高速互联网接入有助于获取最新的开源资源和技术文档资料,同时也便于参与在线协作开发活动。 - **散热解决方案**:高效的冷却机制能有效防止长时间高强度运算过程中产生的过热现象影响到硬件寿命及稳定性[^2]。 考虑到并非所有人都有条件购置上述高端设备,在这种情况下利用云计算平台提供的虚拟机实例也是一种明智的选择。例如ToDesk云电脑就提供了经过特别调校过的环境,专为那些渴望接触前沿科技却受限于本地设施条件的人士设计[^3]。 ```python import torch print(torch.cuda.is_available()) # 检查是否有可用的CUDA GPU ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zxfeng~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值