esp32+ai
文章平均质量分 89
本专栏将详细介绍在ESP32S3上使用TinyML实现宠物猫识别,通过MQTT将识别结果发送到云端,并可以远程对开发板进行控制。
zxfeng~
专注通信电子领域的分享,包括但不限于嵌入式、linux、fpga、人工智能、物联网
展开
-
ESP-DL部署魔改MobilenetV1—3. 模型部署
在模型定义时,我们需要用到量化时输出的层信息、cat_vs_dog_coefficient.hpp,必要时还可以使用netron查看神经网络的结构。├── main├── model我们以下关于模型的操作均在文件中完成。接下来是定义每个层。由于onnx中张量的顺序为CHW,而我们训练时使用的是HWC顺序,因此在模型输入端会有一个reshape或transpose,这里这层和输入不需要定义。原创 2024-09-04 10:02:37 · 1191 阅读 · 1 评论 -
ESP-DL部署魔改MobilenetV1—2. 模型量化
在上一节完成模型的训练和导出后,这一节我们来基于esp-dl,使用其提供的量化工具包来完成模型的量化。原创 2024-08-30 19:10:57 · 653 阅读 · 0 评论 -
ESP-DL部署魔改MobilenetV1—1. 模型训练
基于mobilenetV1,使用esp-dl部署猫狗识别网络之模型训练原创 2024-08-27 11:54:25 · 831 阅读 · 0 评论 -
XIAO ESP32S3部署Edge Impulse模型
在ESP32S3中部署使用EdgeImpulse训练完成的图片分类模型原创 2024-03-11 09:09:15 · 1757 阅读 · 2 评论 -
TinyML:Edge Impulse训练图片分类模型
基于Edge Impulse进行图片分类模型的训练原创 2024-03-10 16:11:58 · 2905 阅读 · 0 评论