periodic process

周期性处理

  1. Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting(ASTGNN)
    考虑:全局周期性和局部周期性
  • 全局周期性:是由于人类活动的规律性产生的,例如,通勤者每周一早上8点离家,因此在一周的同一天的同一时间,交通状况往往是相似的。
  • 局部周期性:往往是由气候或天气的变化引起的,如大雪连续三天的交通速度与其他天明显不同。
    为了在预测future T p T_p Tp时间步的流量时考虑这两种周期模式,除了引入过去 T h T_h Th时间步的历史记录外,还引入了另外两个历史记录。
  • 全局周期张量:为了捕获全局的周期性,将过去 w w w周内同一天的流量记录的 T p T_p Tp片也当作输入。即 X g ∈ R N × C × w ∗ T p X_g \in R^{N \times C \times w * T_p} XgRN×C×wTp
  • 局部周期性:为了捕获局部周期性,我们考虑过去连续 d d d T p T_p Tp个交通记录片,即 X l ∈ R N × C × d ∗ T p X_l \in R^{N \times C \times d*T_p} XlRN×C×dTp
    获得了全局周期张量 X g X_g Xg和局部周期张量 X l X_l Xl,将它们与过去的 T h T_h Th时间步长张量 X X Xconcatenate起来,得到一个新的输入张量 R N × C × ( w ∗ T p + d ∗ T p + T h ) R^{N \times C \times(w*T_p+d*T_p+T_h)} RN×C×(wTp+dTp+Th)

用的是未来的P个时间段,直接拼接到输入。
2. Spatiotemporal Deep-Learning Networks for Shared-Parking Demand Prediction

交通流具有很强的周期性。当前的流量依赖于最近的时间间隔、每日和每周的时间尺度,即具有周期性移动属性。日周期属性和周周期,是指前几天和前几周内连续几天同时出现的交通状况。例如,如果我们想预测周一上午11点到11点30分之间的共享停车流量,那么为了捕捉每日的周期特征,我们应该利用上一周周三到周日上午11点到11点30分之间收集的数据。(连续几天内得该时间段) 另一方面,为了捕获每周的周期性特征,我们应该使用时间间隔中前两周的周一的数据作为输入。(数周的同一时间内)
考虑三种时间维度:recent, daily, and weekly.

  • recent: F t r = ( F t − T r , F t − T r + 1 , . . . , F t − 1 ) F_t^r = (F_{t-T_r},F_{t-T_r+1},...,F_{t-1}) Ftr=(FtTr,FtTr+1,...,Ft1)
  • daily: F t d = ( F t − T d ∗ q , F t − ( T d − 1 ) ∗ q , . . . , F t − q ) F_t^d = (F_{t-T_d*q},F_{t-(T_d-1)*q},...,F_{t-q}) Ftd=(FtTdq,Ft(Td1)q,...,Ftq)
  • weekly: F t w = ( F t − T w ∗ 7 q , F t − ( T w − 1 ) ∗ 7 q , . . . , F t − ∗ 7 q ) F_t^w = (F_{t-T_w*7q},F_{t-(T_w-1)*7q},...,F_{t-*7q}) Ftw=(FtTw7q,Ft(Tw1)7q,...,Ft7q)
  1. (APTN)A Spatial–Temporal Attention Approach for Traffic Prediction 下载链接
    利用注意力机制建立了spatial、temporal和periodic相关性模型。如下图所示,首先,利用全连接神经网络提取输入向量的特征;然后,我们用一个recuurrent skip-connection 神经网络来处理长期的周期性输入。在Encoder中,提出了一种新的注意力机制,对空间依赖性和周期性依赖性进行编码。最后,在Decoder中,应用一种temporal注意机制来捕获编码器隐藏状态在所有时间步骤中的依赖项。
    在这里插入图片描述

对于交通数据集,有一个明确的日/周模式。为了预测当前 t t t时间的state,除了recent的记录外,一个精确的模型还需要利用历史的 t t t时间得记录。因此,在我们的模型中,考虑了short-term 和long-term 的 periodical dependencies.

  • 短期: X S = ( X 1 , n + 1 , . . . , X T s − 1 , n + 1 , X T s , n + 1 ) ∈ R T s × N X^S = (X_{1,n+1},...,X_{T_s-1,n+1},X_{T_s,n+1}) \in R^{T_s \times N} XS=(X1,n+1,...,XTs1,n+1,XTs,n+1)RTs×N
    -在这里插入图片描述
  • 长期: X L = ( X 1 , 1 , X 2 , 1 , . . . , X T s , 1 , X 1 , 2 , . . . , X T s , n ) ∈ R n T s × N X^L = (X_{1,1},X_{2,1},...,X_{T_s,1},X_{1,2},...,X_{T_s,n}) \in R^{nT_s \times N} XL=(X1,1,X2,1,...,XTs,1,X1,2,...,XTs,n)RnTs×N
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值