凸函数定义与判定条件 凸优化方法总论

凸集与凸函数

首先是凸集的定义。一个集合 S ∈ R n S\in \mathbb{R}^n SRn称为凸集( R n \mathbb{R}^n Rn表示 n n n维实向量空间),如果对于任意两个点 a , b ∈ S a,b\in S a,bS,连接它们的线段也在集合 S S S内,如下图:
在这里插入图片描述
任意多个凸集的交集仍为凸集。

函数 f : R n → R f:\mathbb{R}^n→\mathbb{R} f:RnR(由 n n n维实向量到实数的映射函数)为凸函数,当且仅当其定义域 S S S是凸集,且对于所有 x , y ∈ S x,y\in S x,yS和每一个标量 a ∈ ( 0 , 1 ) a\in(0,1) a(0,1),满足Jensen不等式:
f ( a x + ( 1 − a ) y ) ≤ a f ( x ) + ( 1 − a ) f ( x ) f(ax+(1-a)y)\le af(x)+(1-a)f(x) f(ax+(1a)y)af(x)+(1a)f(x)
f ( x ) f(x) f(x)为严格凸函数,当且仅当 x , y , a x,y,a x,y,a满足:
f ( a x + ( 1 − a ) y ) < a f ( x ) + ( 1 − a ) f ( x ) f(ax+(1-a)y)< af(x)+(1-a)f(x) f(ax+(1a)y)<af(x)+(1a)f(x)

凸函数识别的充要条件

一阶充要条件

f ( x ) f(x) f(x)为凸函数,当 x , y , f ( x ) , f ′ ( x ) x,y,f(x),f'(x) x,y,f(x),f(x)满足:
( f ′ ( x ) − f ′ ( y ) ) ( x − y ) ≥ 0 ,   ∀ x , y ∈ S (f'(x)-f'(y))(x-y)\ge0,\ \forall x,y\in S (f(x)f(y))(xy)0, x,yS
f ( x ) f(x) f(x)为严格凸函数,当 x , y , f ( x ) , f ′ ( x ) x,y,f(x),f'(x) x,y,f(x),f(x)满足:
( f ′ ( x ) − f ′ ( y ) ) ( x − y ) > 0 ,   ∀ x , y ∈ S , 且 x ≠ y (f'(x)-f'(y))(x-y)>0,\ \forall x,y\in S,且x\ne y (f(x)f(y))(xy)>0, x,yS,x=y
f ( x ) f(x) f(x)为凸函数,当 x , y , f ( x ) , f ′ ( x ) x,y,f(x),f'(x) x,y,f(x),f(x)满足:
f ( y ) ≥ f ( x ) + f ′ ( x ) ( y − x ) f(y)\ge f(x)+f'(x)(y-x) f(y)f(x)+f(x)(yx)

二阶充要条件

f ( x ) f(x) f(x)为严格凸函数,当且仅当其Hessian矩阵正定:
H x f ( x ) = ∂ 2 f ( x ) ∂ x ∂ x T ≻ 0 ,   ∀ x ∈ S H_xf(x)=\frac{\partial^2 f(x)}{\partial x\partial x^T}\succ0,\ \forall x\in S Hxf(x)=xxT2f(x)0, xS

如果Hessian矩阵是半正定,则为一般的凸函数,不是严格凸函数。
凸函数的非负倍数求和、积分、仿射变换都是凸函数。
向量除了 L 0 L_0 L0范数外的所有范数都是凸函数。
无约束凸函数的任意局部极小点 x ∗ x* x都是该函数的一个全局极小点。

凸优化方法总论

对于无约束的平滑(可求导的)凸函数,可用方法包括梯度法,投影梯度法,共轭梯度法,Nesterov最优梯度法;
对于无约束的非平滑凸函数,可用方法分为次梯度类型和平滑函数逼近类型,前者包括迫近函数,共轭函数,原始-对偶次梯度算法,投影次梯度算法;后者包括非平滑函数的平滑逼近,迫近梯度法;
对于有约束的一阶可导凸函数,可用方法包括Lagrangian乘子法与对偶上升法,罚函数法,增广Lagrangian乘子法,交替方向乘子法(ADMM);
其他方法还包括无约束优化的Newton法,适用于无约束的二阶可导凸函数;等式约束优化的Newton法,适用于等式约束的二阶可导凸函数。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值