凸优化简介9

本文深入探讨了凸函数的定义和性质,强调了它们在无约束优化问题中的重要性。通过一系列定理和证明,阐述了凸函数如何确保一阶优化方法能够找到全局最小值,同时给出了二次连续可微函数属于凸函数类的条件。文章还列举了线性和二次凸函数作为例子。
摘要由CSDN通过智能技术生成

凸函数的定义与性质

假设一个无约束的最小化问题,目标函数 f ( x ) f(x) f(x)是光滑的,目标是 min ⁡ x ∈ R n f ( x ) \min\limits_{x\in \mathbb{R}^n}f(x) xRnminf(x)
不过,在解这类问题时,使用一阶优化的方法(例如梯度下降方法)很容易收敛在某个类似鞍点的地方。在下面的分析中,假设 :对于任意的函数 f f f,一阶优化对于一个点称为全局解来说是充分的。进一步的,对于任意可解的泛函类 F \mathfrak{F} F的主要特征是:存在用简单的方法来校验包含关系 f ∈ F f\in \mathfrak{F} fF的可能。
下面引入两个假设:
1. 如果 f 1 , f 2 ∈ F f_1, f_2\in \mathfrak{F} f1,f2F,并且 α , β ≥ 0 \alpha,\beta \geq 0 α,β0,那么 α f 1 + β f 2 ∈ F \alpha f_1+\beta f_2\in \mathfrak{F} αf1+βf2F.
2. 任何线性函数 f ( x ) = α + ⟨ a , x ⟩ f(x)=\alpha+\langle a,x\rangle f(x)=α+a,x属于 F \mathfrak{F} F.
下面考虑函数 f ∈ F f\in \mathfrak{F} fF x 0 ∈ R n x_0\in \mathbb{R}^n x0Rn,函数 Φ ( y ) = f ( y ) − ⟨ ∇ f ( x 0 ) , y ⟩ \Phi(y)=f(y)-\langle \nabla f(x_0),y\rangle Φ(y)=f(y)f(x0),y。因为 Φ ′ ( y ) ∣ y = x 0 = ∇ f ( x 0 ) − ∇ f ( x 0 ) = 0 \Phi'(y)|_{y=x_0}=\nabla f(x_0)-\nabla f(x_0)=0 Φ(y)y=x0=f(x0)f(x0)=0,结合上面的假设,得到 x 0 x_0 x0是函数 Φ \Phi Φ全局最小,因此,对于任意的 y ∈ R n y \in \mathbb{R}^n yRn,有 Φ ( y ) ≥ Φ ( x 0 ) = f ( x 0 ) − ⟨ ∇ f ( x 0 ) , x 0 ⟩ \Phi(y)\geq \Phi(x_0)=f(x_0)-\langle \nabla f(x_0),x_0\rangle Φ(y)Φ(x0)=f(x0)f(x0),x0,因此得到式子:
f ( y ) ≥ f ( x 0 ) + ⟨ ∇ f ( x 0 ) , y − x 0 ⟩ f(y)\geq f(x_0)+\langle \nabla f(x_0),y-x_0\rangle f(y)f(x0)+f(x0),yx0,该不等式定义了一类可微的凸函数。

定义:一个连续可微的函数 f ( x ) f(x) f(x)称为在 R n \mathbb{R}^n Rn上是凸的,当且仅当,对于

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值