CNN

CNN

cnn 特点 优势

  1. 局部卷积 有利于提取局部特征
  2. 权值共享 更少的参数量 容易操作
  3. pooling层 降维,低层次特征提取出高层次特征
  4. 多层级结构 可建模出复杂模型

pooling 层作用

  1. invariance(不变性),这种不变性包括translation(平移),rotation(旋转),scale(尺度)
  2. 保留主要的特征同时减少参数(降维,效果类似PCA)和计算量,防止过拟合,提高模型泛化能力

Parameters、FLOPs

对于一个卷积层,假设 kernel 大小为 H ′ ∗ W ′ H' * W' HW , C i n C_{in} Cin为input channel, C o u t C_{out} Cout为output channel,输出的feature map尺寸为 h ′ ∗ w ′ h' * w' hw,则该卷积层的

  1. Parameters(参数量)
    每个卷积核的大小= H ′ ∗ W ′ ∗ C i n H' * W' * C_{in} HWCin
    一共有 C o u t C_{out} Cout个卷积核,加上 C o u t C_{out} Cout个bias
    Parameters= ( H ′ ∗ W ′ ∗ C i n + 1 ) ∗ C o u t (H' * W' * C_{in}+1)*C_{out} (HWCin+1)Cout

  2. FLOPs(floating point operations 浮点运算量)
    每个卷积核的大小= H ′ ∗ W ′ ∗ C i n H' * W' * C_{in} HWCin
    每个卷积核运算次数 乘&加 = ( H ′ ∗ W ′ ∗ C i n ) + ( H ′ ∗ W ′ ∗ C i n − 1 ) (H' * W' * C_{in})+(H' * W' * C_{in}-1) HWCin+HWCin1
    = 2 ∗ ( H ′ ∗ W ′ ∗ C i n ) − 1 2*(H' * W' * C_{in})-1 2HWCin1
    一个卷积核的运算次数为 h ′ ∗ w ′ h' * w' hw,一共有 C o u t C_{out} Cout个卷积核,加上 C o u t C_{out} Cout个bias

    FLOPS= ( h ′ ∗ w ′ ) ∗ ( 2 ∗ ( H ′ ∗ W ′ ∗ C i n ) − 1 + 1 ) ∗ C o u t (h' * w')*(2*(H' * W' * C_{in})-1+1)*C_{out} (hw)(2HWCin1+1)Cout

    = ( h ′ ∗ w ′ ) ∗ ( 2 ∗ ( H ′ ∗ W ′ ∗ C i n ) ∗ C o u t =(h' * w')*(2*(H' * W' * C_{in})*C_{out} =(hw)(2HWCin)Cout

反向传播

  1. conv 层
  2. pooling 层
    2.1 平均池化(Mean Pooling) 平均分Err
    2.2 最大池化(Max Pooling) 记录最大/最小下标 传给该下标

感受野(Receptive Field)

即该层Feature Map上像素点映射到原图像时的区域大小
如何计算? 根据Conv 公式倒推
正向计算公式
H i + 1 = ( H i − K e r + 2 ∗ P a d ) / S t r i + 1 H_{i+1}=(H_i-Ker+2*Pad)/Stri+1 Hi+1=(HiKer+2Pad)/Stri+1
忽略padding(padding是后来虚拟加上去的,这里要算的是原图像对一个像素点的影响范围,所以计算的是真实的原图像像素量,不用管padding)
H i = ( H i + 1 − 1 ) ∗ S t r i + K e r H_{i}=(H_{i+1}-1)*Stri+Ker Hi=(Hi+11)Stri+Ker
该层 H i = 1 H{i}=1 Hi=1,向前递推即可

不同损失函数

  1. Cross entropy 逻辑回归
    二分类 BCELoss/BCEWithLogitsLoss(+sigmoid)

多分类 = NLLloss/ CrossEntropyLoss(内嵌softmax)

p i c = s o f t m a x ( x i c ) = e x p ( x i c ) ∑ c e x p ( x i j ) p_{ic}=softmax(x_{ic})=\frac{exp(x_{ic})}{\sum_c exp(x_{ij})} pic=softmax(xic)=cexp(xij)exp(xic)
在这里插入图片描述

  1. 均方差 MSE 线性回归
    在这里插入图片描述
  2. focal loss
  • 降低易分类样本权重
    原BCEloss
    在这里插入图片描述
    focal:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 减小负样本比重
    在这里插入图片描述
    权重因子的大小一般为相反类的比重
    推广到多分类?
    在这里插入图片描述

1x1 卷积作用

  1. 实现跨通道的交互和信息整合;
  2. 进行卷积核通道数的降维和升维

扩大图像尺寸

  1. unpooling
    保留max pooling位置信息,其他位置填0
  2. upsample
    不保留位置信息,同样块填相同值
  3. 反卷积
    做padding后卷积得到指定尺寸的图像
  • 原始conv没有pad
    在这里插入图片描述
  • 原始conv有pad
    在这里插入图片描述
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值