部署 DeepSeek-R1,配置、价格与并发量全攻略!

大家好,我是小码哥,今天给大家带来的是部署 DeepSeek-R1 的详细攻略,包括硬件配置、价格以及软件环境和并发量的考虑,让你轻松上手!

一、硬件配置与价格

1. DeepSeek-R1-1.5B

配置项

规格要求

价格(万元)

CPU

最低 4 核(推荐 Intel/AMD 多核处理器)

0.08

内存

8GB+

0.03

硬盘

3GB+ 存储空间(模型文件约 1.5-2GB)

0.02

显卡

非必需(纯 CPU 推理),若 GPU 加速可选 4GB+ 显存(如 GTX 1650)

0.05

总计

0.18

2. DeepSeek-R1-7B

配置项

规格要求

价格(万元)

CPU

8 核以上(推荐现代多核 CPU)

0.15

内存

16GB+

0.08

硬盘

8GB+(模型文件约 4-5GB)

0.04

显卡

推荐 8GB+ 显存(如 RTX 3070/4060)

0.25

总计

0.52

3. DeepSeek-R1-8B

配置项

规格要求

价格(万元)

CPU

8 核以上(推荐现代多核 CPU)

0.15

内存

16GB+

0.08

硬盘

8GB+(模型文件约 4-5GB)

0.04

显卡

推荐 8GB+ 显存(如 RTX 3070/4060)

0.25

总计

0.52

4. DeepSeek-R1-14B

配置项

规格要求

价格(万元)

CPU

12 核以上

0.45

内存

32GB+

0.3

硬盘

15GB+

0.1

显卡

16GB+ 显存(如 RTX 4090 或 A5000)

1.5

总计

2.35

5. DeepSeek-R1-32B

配置项

规格要求

价格(万元)

CPU

16 核以上(如 AMD Ryzen 9 或 Intel i9)

0.4

内存

64GB+

0.2

硬盘

30GB+

0.1

显卡

24GB+ 显存(如 A100 40GB 或双卡 RTX 3090)

20

总计

20.7

6. DeepSeek-R1-70B

配置项

规格要求

价格(万元)

CPU

32 核以上(服务器级 CPU)

4

内存

128GB+

4

硬盘

70GB+

0.1

显卡

多卡并行(如 2x A100 80GB 或 4x RTX 4090)

40

总计

48.1

7. DeepSeek-R1-671B

配置项

规格要求

价格(万元)

CPU

64 核以上(服务器集群)

6

内存

512GB+

8

硬盘

300GB+

0.1

显卡

多节点分布式训练(如 8x A100/H100)

80

总计

94.1

二、软件环境

部署 DeepSeek-R1 需要以下软件环境:

1. 操作系统

Windows:Windows 10/11 64 位

Linux:Ubuntu 20.04/22.04 LTS

2. 驱动与 CUDA

NVIDIA 驱动:最新版本

CUDA:11.0 以上(H100 支持 CUDA 12)

3. AI 框架

PyTorch:1.10 以上

TensorFlow:2.10 以上

KTransformers:用于推理加速

4. 量化优化

4-bit/8-bit 量化:降低显存占用 30-50%

5. 推理框架

vLLM:提升推理效率

TensorRT:用于高性能推理

三、并发量考虑

1. 并发量需求

1.5B/7B/8B:适合低并发场景(如个人开发、小企业应用)

14B/32B:适合中等并发场景(如企业级应用、小型数据中心)

70B/671B:适合高并发场景(如大型数据中心、云服务)

2. 并发量优化

硬件升级:增加 GPU 数量、提升网络带宽

软件优化:使用量化技术、优化模型结构

分布式部署:多节点分布式训练和推理

四、Deepseek全系列文档

感谢分析们对小码哥的支持,全网最全的deepseek 系列文档,文末点击名片,备注dp,免费赠送啦。

### 对 DeepSeek API 执行并发性能测试 为了评估 DeepSeek API 的并发处理能力,可以采用多种方法和技术来模拟高负载情况下的请求响应时间和服务稳定性。以下是具体实现方案: #### 使用 Apache JMeter 进行压力测试 Apache JMeter 是一款广泛使用的开源软件,专为加载和性能测试设计。 1. 安装并启动 JMeter 应用程序。 2. 创建一个新的测试计划,在其中定义线程组(Thread Group),配置虚拟用户的数量以及每秒发起的新用户数(Ramp-Up Period),以此控制并发量大小。 3. 添加 HTTP 请求默认值(HTTP Request Defaults)组件,输入目标服务器地址即 DeepSeek API URL。 4. 插入一个或多个HTTP请求(Http Request Sampler), 设置必要的参数如 method (POST/GET), path, headers 及 body data. 5. 通过监听器(Listener)收集统计信息,比如聚合报告(Aggregate Report)能提供平均响应时间和吞吐率等重要指标;图形结果显示(Response Times Over Time)有助于直观了解随时间变化的趋势。 ```bash # 示例命令用于安装JMeter于Linux系统上 sudo apt-get install jmeter ``` #### 利用 Python 脚本配合多进程库 `multiprocessing` 或异步框架 `asyncio` 编写自定义脚本来生成大量并发请求也是一种有效手段。这里给出基于Python语言的例子: ##### 方法一:利用 multiprocessing 模块创建子进程池 这种方法适合 CPU 密集型任务,但对于 I/O 密集型场景同样适用。 ```python import requests from multiprocessing import Pool def send_request(url): try: response = requests.post(url=url) return {'status_code':response.status_code,'text':response.text} except Exception as e: return str(e) if __name__ == '__main__': url = 'https://api.deepseek.example.com' pool_size = 100 # 并发请求数目 with Pool(processes=pool_size) as p: results = list(p.map(send_request,[url]*pool_size)) for result in results: print(result) ``` ##### 方法二:借助 asyncio 实现协程调度 这种方式更适合网络 IO 密集的任务,并且能够更高效地管理资源。 ```python import aiohttp import asyncio async def fetch(session,url): async with session.post(url) as resp: text = await resp.text() status_code = resp.status return {"status_code":status_code,"content":text} async def main(): urls=['https://api.deepseek.example.com']*100 tasks=[] async with aiohttp.ClientSession() as session: for url in urls: task = asyncio.create_task(fetch(session=session,url=url)) tasks.append(task) responses = await asyncio.gather(*tasks) for r in responses: print(r) loop = asyncio.get_event_loop() loop.run_until_complete(main()) ``` 需要注意的是,由于 DeepSeek API 不支持联网搜索功能[^1] ,所以在构建测试案例时应确保所提交的数据不会依赖外部互联网连接来进行正常工作流程中的任何部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码哥(xmgcode88)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值