在 YOLO(You Only Look Once) 目标检测模型中集成 SEAttention(Squeeze-and-Excitation Attention) 机制可以增强特征通道的权重学习能力,提高检测精度。以下是详细的改进步骤和代码实现(以 YOLOv5 或 YOLOv8 为例):
1. SEAttention 原理
SEAttention 通过 Squeeze(全局信息压缩) 和 Excitation(通道权重学习) 两个步骤动态调整特征通道的重要性:
- Squeeze:全局平均池化(GAP)压缩空间信息,生成通道描述向量。
- Excitation:全连接层学习通道权重,增强重要特征通道。
2. 代码实现(PyTorch)
(1) 定义 SEAttention 模块
在 models/common.py 中添加以下代码:
import torch
import torch.nn as nn
class

订阅专栏 解锁全文
2740

被折叠的 条评论
为什么被折叠?



