改进YOLO系列:添加SEAttention注意力机制

在 YOLO(You Only Look Once) 目标检测模型中集成 SEAttention(Squeeze-and-Excitation Attention) 机制可以增强特征通道的权重学习能力,提高检测精度。以下是详细的改进步骤和代码实现(以 YOLOv5 或 YOLOv8 为例):


1. SEAttention 原理
SEAttention 通过 Squeeze(全局信息压缩) 和 Excitation(通道权重学习) 两个步骤动态调整特征通道的重要性:

  1. Squeeze:全局平均池化(GAP)压缩空间信息,生成通道描述向量。
  2. Excitation:全连接层学习通道权重,增强重要特征通道。

2. 代码实现(PyTorch)
(1) 定义 SEAttention 模块
models/common.py 中添加以下代码:

import torch
import torch.nn as nn

class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆小马

赏个核桃让我补补脑呗!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值