官方给出的fasttext预训练词向量下载地址:https://fasttext.cc/docs/en/english-vectors.html
wiki-news-300d-1M.vec.zip: 在维基百科2017、UMBC webbase语料库和statmt.org新闻数据集中(16B tokens)训练的100万个词向量。>
wiki-news-300d-1M-subword.vec.zip: 在维基百科2017、UMBC webbase语料库和statmt.org新闻数据集(16B tokens)中包含子单词信息训练的100万个词向量。
crawl-300d-2M.vec.zip: 在Common Crawl训练的200万个词向量 (600B tokens)。
crawl-300d-2M-subword.zip: 在subword information on Common Crawl 训练的200万个词向量 (600B tokens).
官方给出的格式是
import io
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
n, d = map(int, fin.readline().split())
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = map(float, tokens[1:])
return data
但是我希望可以直接加载为模型,以为要下载.bin的格式,结果google查到可以用gensim包直接加载:
from gensim.models import KeyedVectors
FASTTEXTFILE="./fastText/wiki-news-300d-1M.vec"
FASTTEXT=KeyedVectors.load_word2vec_format(FASTTEXTFILE,limit=500000)
另外把.bin的加载方法也放在这对比下:
from gensim.models import FastText
FASTTEXTFILE = "./fastText/cc.en.300.bin"
FASTTEXT=FastText.load_fasttext_format(FASTTEXTFILE)