fasttext预训练词向量加载

本文介绍了如何使用gensim包加载FastText提供的预训练词向量,并提供了两种不同格式(.vec与.bin)的加载示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方给出的fasttext预训练词向量下载地址:https://fasttext.cc/docs/en/english-vectors.html

wiki-news-300d-1M.vec.zip: 在维基百科2017、UMBC webbase语料库和statmt.org新闻数据集中(16B tokens)训练的100万个词向量。>

wiki-news-300d-1M-subword.vec.zip: 在维基百科2017、UMBC webbase语料库和statmt.org新闻数据集(16B tokens)中包含子单词信息训练的100万个词向量。

crawl-300d-2M.vec.zip: 在Common Crawl训练的200万个词向量 (600B tokens)。

crawl-300d-2M-subword.zip: 在subword information on Common Crawl 训练的200万个词向量 (600B tokens).

官方给出的格式是

import io
 
def load_vectors(fname):
    fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
    n, d = map(int, fin.readline().split())
    data = {}
    for line in fin:
        tokens = line.rstrip().split(' ')
        data[tokens[0]] = map(float, tokens[1:])
    return data

但是我希望可以直接加载为模型,以为要下载.bin的格式,结果google查到可以用gensim包直接加载:

from gensim.models import KeyedVectors
FASTTEXTFILE="./fastText/wiki-news-300d-1M.vec"
FASTTEXT=KeyedVectors.load_word2vec_format(FASTTEXTFILE,limit=500000)

另外把.bin的加载方法也放在这对比下:

from gensim.models import FastText
FASTTEXTFILE = "./fastText/cc.en.300.bin"
FASTTEXT=FastText.load_fasttext_format(FASTTEXTFILE)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值