题目描述:
给定一个源串和目标串,能够对源串进行如下操作:
在任意位置上插入
一个字符;
替换
任意字符;
删除
任意字符。
写一个程序,实现返回最小操作次数,使得对源串进行上述这些操作后等于目标串(源串和目标串的长度都小于2000)。
解析:
拿到编辑距离问题,最朴素的想法便是暴力遍历所有的解决方案,即用DFS
或者BFS+优先队列
来存每次遍历的结果,最后找到最优解。显然,这种思路可行性低,算法的时间、空间复杂度较高。经过思考,我发现编辑距离问题的最优解中包含了子问题的最优解
,且其独立的子问题
的解被重复计算了多次。因此可以将编辑距离问题划分为若干个规模更小的子问题
,这符合动态规划的特征及基本思想,考虑用动态规划解决。
首先定义这样一个数组——dp[len1+1][len2+1]
,其中len1
、len2
分别代表输入的源字符串和目标字符串的长度。dp[i][j]
代表源字符串的前i
个字符转换为目标字符串的前j个字符所需的最少操作步数。
经过归纳推导得出动态规划状态转移方程:
设计:
-
动态规划求最小操作数(寻找最优解):
核心思路为初始化dp表+套用状态转移方程;
-
回溯法输出转换过程:
从结果dp[len1][len2]
开始自底向上回溯,共有四个分支。分别为dp[i-1][j]+1
、dp[i][j-1]+1
、dp[i-1][j-1]+1
、dp[i-1][j-1]
与dp[i][j]
的值做比对。
由于回溯结果是倒着的,所以在实际代码中用了一个文本流进行倒序存储回溯结果,输出后就是正序的了。
分析:
设m=len(source_str)
; n=len(target_str)
;
- 时间复杂度分析:
在动态规划建立dp表
时,两层for循环
,时间复杂度为O(mn)
;
在回溯时,一层while
循环,时间复杂度为O(max{m,n})
;
因此,本程序总时间复杂度为O(mn)
; - 空间复杂度分析:
开辟了二维数组dp[m][n]
,空间复杂度为O(mn)
;
题解:
#include <bits/stdc++.h>
using namespace std;
int main(){
string source_str, target_str;
stringstream line; // 记输出的第一行的内容,避免多做一次循环
cout<<"源字符串: "; cin>>source_str;
cout<<"目标字符串: "; cin>>target_str;
int len1 = source_str.length(), len2 = target_str.length();
int dp[len1+1][len2+1]; // dp[i][j]代表source_str前i个字符 →target_str前j个字符所需的最少步数
cout<<"--------------------------------------------"<<endl<<" ";
for(int j = 0; j <= len2; ++j) { // 初始化dp数组,并输出表头
dp[0][j] = j;
if(j == 0) cout<<" 空 ";
else cout<<target_str[j-1]<<" ";
line<<j<<" ";
}
cout<<endl<<"空 "<<line.str();
for(int i = 0; i <= len1; ++i) { // 初始化dp数组,并输出表头
dp[i][0] = i;
}
cout<<endl;
// 核心代码
for(int i = 1; i <= len1; ++i) {
cout<<" "<<source_str[i-1]<<" "<<i<<" ";
for(int j = 1; j <= len2; ++j) {
if(source_str[i-1] == target_str[j-1]){ // 当前的字符相等则dp[i][j]=dp[i-1][j-1]
dp[i][j] = dp[i-1][j-1];
}
else{ // 1.替换:d[i][j]=d[i-1][j-1]+1; 2.target_str的字母插入source_str:d[i][j] = d[i][j-1] + 1; 3.删除source_str的字母:d[i][j] = d[i-1][j] + 1;
dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
}
cout<<dp[i][j]<<" ";
}
cout<<endl;
}
cout<<"--------------------------------------------"<<endl<<"最小操作次数为 "<<dp[len1][len2]<<endl<<endl;
cout<<"---------------转换过程回溯----------------"<<endl;
int i = len1, j = len2 ;
int mindis = dp[i][j];
string performs = "";
while(i > 0 && j > 0) {
if(dp[i][j-1]+1 == dp[i][j]) { // mindis = d[i][j-1];
stringstream perform;
perform<<"源字符串 插入字符 "<<target_str[j-1]<<" , 操作代价为1;"<<endl;
performs = perform.str() + performs;
j--;
}
else if(dp[i-1][j]+1 == dp[i][j]) { // mindis = d[i-1][j];
stringstream perform;
perform<<"目标字符串 删除字符 "<<source_str[i-1]<<" , 操作代价为1;"<<endl;
performs = perform.str() + performs;
i--;
}
else if(dp[i-1][j-1]+1 == dp[i][j]) { // mindis = d[i-1][j-1];
stringstream perform;
perform<<"源字符串 中的 "<<source_str[i-1]<<" 替换为 目标字符串 的 "<<target_str[j-1]<<" , 操作代价为1;"<<endl;
performs = perform.str() + performs;
i--; j--;
}
else if(dp[i-1][j-1] == dp[i][j]) { // d[i][j] = d[i-1][j-1];
stringstream perform;
perform<<"源字符串 中的 "<<source_str[i-1]<<" 匹配 目标字符串 的 "<<target_str[j-1]<<" , 操作代价为0;"<<endl;
performs = perform.str() + performs;
i--; j--;
}
else {
i--; j--;
}
}
cout<<performs;
return 0;
}