动态规划之最长公共子序列

先来看一下基本概念

1、公共子序列:给定两个序列X和Y,如果Z既是X的子序列,又是Y的子序列,那么称Z是X和Y的公共子序列。

2、最长公共子序列:求公共子序列中长度最长的。

最长公共子序列问题,简称LCS问题,下边说一下求解思路:

步骤一:刻画最长公共子序列的特征:

前缀:给定一个序列X={x1,x2,x3...xm},对于i=1...m,定义X的第i前缀Xi={x1,x2,..xi};

结论:两序列的LCS包含两序列的前缀的LCS。因此,LCS问题具有最优子结构性质。

步骤二:

定义c[i,j]表示X和Y的LCS长度,下边给出递归式:


步骤三:

自底向上的动态规划方法:

void LCS_down2up(DataType X[],int m,DataType Y[],int n,int c[M+1][N+1],char b[M+1][N+1])
{
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(X[i-1]==Y[j-1])
            {
                c[i][j]=c[i-1][j-1]+1;
                b[i][j]='D'; //D means diagonal(对角线)
            }
            else
            {
                c[i][j]=max(c[i-1][j],c[i][j-1]);
                if(c[i-1][j]>c[i][j-1])
                    b[i][j]='T';  // T means top
                else b[i][j]='L';  // L means left
            }
        }
    }
}
c数组保存最大子序列长度,b数组记录子问题的调用方向


步骤四、构造LCS

void print_result(char b[M+1][N+1],DataType X[],int i,int j)
{
    if(i==0 || j==0) ;
    else {
    if(b[i][j]=='D')
    {
        print_result(b,X,i-1,j-1);
        cout<<X[i-1];
    }
    else if(b[i][j]=='T')
        print_result(b,X,i-1,j);
    else print_result(b,X,i,j-1);
    }
}

其实最大公共子序列并非只有一个,我们所做的只是找出了满足条件的一个最优解而已,所以在运行测试代码时,我们构造解的起点不同,最后打印的LCS也不同。

测试代码

#include <iostream>
#define M 7
#define N 6
typedef char DataType;
using namespace std;
//down to top
void LCS_down2up(DataType X[],int m,DataType Y[],int n,int c[M+1][N+1],char b[M+1][N+1])
{
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(X[i-1]==Y[j-1])
            {
                c[i][j]=c[i-1][j-1]+1;
                b[i][j]='D'; //D means diagonal(对角线)
            }
            else
            {
                c[i][j]=max(c[i-1][j],c[i][j-1]);
                if(c[i-1][j]>c[i][j-1])
                    b[i][j]='T';  // T means top
                else b[i][j]='L';  // L means left
            }
        }
    }
}
void print_result(char b[M+1][N+1],DataType X[],int i,int j)
{
    if(i==0 || j==0) ;
    else {
    if(b[i][j]=='D')
    {
        print_result(b,X,i-1,j-1);
        cout<<X[i-1];
    }
    else if(b[i][j]=='T')
        print_result(b,X,i-1,j);
    else print_result(b,X,i,j-1);
    }
}

int main()
{
    DataType X[]={'a','b','c','b','d','a','b'},Y[]={'b','d','c','a','b','a'};
    int c[M+1][N+1]={0};
    char b[M+1][N+1]={0};
    LCS_down2up(X,M,Y,N,c,b);
    cout<<"the list of result : "<<endl;
    for(int i=1;i<M+1;i++)
    {
        for(int j=1;j<N+1;j++)
        {
            cout<<c[i][j]<<"\t";
        }
        cout<<endl;
    }
    cout<<"b list:"<<endl;
    for(int i=1;i<M+1;i++)
    {
        for(int j=1;j<N+1;j++)
        {
            cout<<b[i][j]<<"\t";
        }
        cout<<endl;
    }
    print_result(b,X,6,6);
    cout<<endl;
    print_result(b,X,7,6);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值