转载:
Pandas 如何从多级字典中构造DataFrame-简书
假设我们有一个嵌套的字典或者说多级字典
第一级是研究对象,比如ID
第二级是研究方法,比如Method
第三级是研究属性,比如Attr
该如何把这样的嵌套字典变成DataFrame呢?
例如,我们的嵌套字典是下面这个样子的
nested_dict = {
'ID 1':{
'Method 1': {
'Attr 1': 1,
'Attr 2': 1,
},
'Method 2': {
'Attr 1': 1,
'Attr 2': 1,
},
},
'ID 2':{
'Method 1': {
'Attr 1': 1,
'Attr 2': 1,
},
'Method 2': {
'Attr 1': 1,
'Attr 2': 1,
},
}
}
对于这样的三级字典,可以将前两级组成MultiIndex,然后使用pandas的from_dict创建Dataframe,如下
pd.DataFrame.from_dict({(i, j): nested_dict[i][j]
for i in nested_dict.keys()
for j in nested_dict[i].keys()},
orient='index')
作者:米糊VERSE
链接:https://www.jianshu.com/p/dbf57684693c
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。