MultiIndex DataFrame多重索引的引用方法

这篇博客介绍了如何在Python的Pandas库中引用具有多重索引的DataFrame。内容涵盖了使用元组、由元组组成的列表以及由列表组成的元组进行引用的方法,并针对实际需求演示了如何越过第一级索引获取特定二级索引的数据。
摘要由CSDN通过智能技术生成

Python;Pandas;DataFrame;MultiIndex;有多重索引的DataFrame数据格式的引用方法

import pandas as pd
import numpy as np
 
se1=pd.Series(np.random.randn(4),index=[list("aabb"),[1,2,1,2]])
print(se1)
a  1   -0.172952
   2    1.032693
b  1    0.760707
   2   -0.281595
dtype: float64

有多重索引的Series的引用方法

print(se1['a'])
print('\r\n')
print(se1['a':'b'])
1   -0.172952
2    1.032693
dtype: float64


a  1   -0.172952
   2    1.032693
b  1    0.760707
   2   -0.281595
dtype: float64
print(se1[:,1])
print('\r\n')
print(se1['a',1])
a   -0.172952
b    0.760707
dtype: float64


-0.1729515873577343

DataFrame的行和列都可以是多重索引

df1=pd.DataFrame(np.arange(18).reshape(6,3),index=[list("AAABBB"),[1,2,3,1,2,3]],columns=[list("XXY"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值