使用机器学习/深度学习进行时间序列预测:第 1 部分 - 对时间序列特征提取的理解

使用机器学习/深度学习进行时间序列预测:第 1 部分 - 对时间序列特征提取的理解

简言

与其他预测模型相比,时间序列特征的表达对时间序列模型的性能影响较大。 因此,时间特征的建模和提取对于模型结果的性能至关重要。 在这篇文章中,在这里我主要介绍,与其他预测相比,我们在时间序列预测中经常谈论的时间特征到底是什么,时域和频域的时间特征有什么区别,以及我们如何应用时间特征完成预测。

时序特征分类

时序特征工程一般分为四个方向:
时域
时域图显示信号(输入)如何随时间变化。 时域特征关注信号(输入)在时间轴上的各种特征,例如输入的幅度、频率、周期等。 通过时域分析,我们可以直接观察信号的瞬时特征,了解信号在不同时间点的变化情况。

频域
频域图显示信号(输入)如何在一定频率范围内的不同频带内分布。 频域分析重点关注信号的频率特性,包括信号的频谱成分、频率分布等。通过频域分析,我们可以了解信号包含哪些频率成分及其强度。

频谱域
频谱域是频域的特例,是指信号在频域的表示。 谱域可以是功率谱密度、能量谱密度等形式,用来表示信号在不同频率下的分布。 谱域分析通常涉及计算信号的频谱以揭示其频率特性。

时频域
时频域分析结合了时域和频域的信息来分析信号随时间和频率的变化。 时频域分析方法,例如短时傅里叶变换(STFT)和连续小波变换(CWT),可以提供不同时间段和频段的信号特征。 这在处理非平稳信号(随时间变化的信号特征)时特别有用,因为它可以显示信号的瞬时频率。

时序特征应用

简而言之,下面通过例子来描述这我们在深度学习机器学习时如何考虑这些时序特征之间的关系:

直接使用时域特征

在时间序列预测的背景下,一种常见的方法是使用直接时间特征而不进行频域变换。 机器学习模型,尤其是深度学习模型,通常能够有效地学习时间序列数据中的模式和趋势,而不需要额外的频域特征。

温度预测

  • 特点: 每小时或每日温度列表。

股价预测

  • 特点:每日收盘价、交易量以及其他随时间变化的财务指标。

能源消耗预测

  • 特点: 每小时或每天的能源消耗数据。

人类活动识别

*特点:来自加速度计或陀螺仪捕获运动的时间序列数据。

交通流量预测

  • 特征:来自交通传感器或摄像头捕获交通模式的时间序列数据。

*经济指标

  • 特点:经济指标的时间序列数据(例如GDP、失业率)。

地震活动预测

  • 特征:来自测量地面振动的地震仪的时间序列数据。

天气预报

  • 特征:日期时间和天气参数数据(例如湿度、风速)。

我们可以看到,所有场景的应用(未来预测)都是基于提取历史指标在每个时间点的特征表达,而这个历史指标是随着时间具有明显变化,且可以直接观察到的。

间接使用频域特征

在某些特殊情况下,我们无法观测到数据是否具有隐藏的时序特征,因此我们需要进行频域分析,将时域特征转化为频域特征可能有助于捕获周期性模式。 例如,在频域中可能更容易检测到一些季节性变化。 在这种情况下,您可以考虑使用傅里叶变换或其他频域分析方法。

心率变异分析

  • 时域特征:连续心跳之间的RR间隔。
  • 频域变换:傅立叶变换来分析频率分量。
  • 应用:研究自主神经系统和心血管健康。

机械系统中的振动分析:

  • 时域特征:来自机械的振动信号。
  • 频域变换:傅立叶变换或小波变换,用于检测与故障相关的频率分量。
  • 应用:工业设备的预测性维护和故障检测。
    音频信号处理:
  • 时域特征:音频波形的幅度。
  • 频域变换:傅里叶变换或短时傅里叶变换(STFT),用于提取频率分量。
  • 应用:音乐分析、语音处理和音频压缩。

脑信号分析(EEG):

  • 时域特征:脑电图信号捕获大脑活动。
  • 频域变换:用于识别频率模式的傅立叶变换或小波变换。
  • 应用:脑机接口、癫痫检测。

语音信号处理:

  • 时域特征:语音波形的幅度。
  • 频域变换:用于分析语音频率的傅里叶变换。
  • 应用:语音识别、说话人识别。

无线通信:

  • 时域特征:信号强度随时间变化。
  • 频域变换:用于信道分析的傅立叶变换。
  • 应用:无线通信信道估计、调制识别。

与(1)中的情况相比,在频域中提取时间特征可以提供额外的时序信息,这是因为:

  • 频域信息的补充:时域特征可能无法完全捕获数据中的所有模式,尤其是在时域中没有显着变化但在频域中发生显着变化的信号。通过提取频域特征,可以捕获在时域中可能被掩盖或模糊的重要频率信息。
  • 消除噪音和趋势:频域分析可以帮助识别和过滤时间序列数据中的噪音和趋势。 这对于建模是有益的,因为它允许模型更多地关注真实模式而不是数据中的噪声。
  • 适应非平稳信号:如果时间序列数据是非平稳的,即其统计特性随时间变化,则频域特征的提取可以帮助捕获这些变化。这对于某些时间序列数据很常见,例如金融数据或某些生物医学信号
  • 波形分析:对于周期性信号,频域分析可以帮助确定其周期性和频率成分,这对于预测未来的周期性变化非常重要。
  • 针对具体问题的要求:在某些应用场景中,在时域的时间特征(频率)相同,那么频域特征可能是问题的关键特征。

本文介绍了时域特征的不同类别及其特点、时域和频域时域特征的区别、不同的应用场景。 在下一篇文章中,我们将介绍如何提取这些时间特征并将其输入到不同场景下的模型中。

  • 23
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值