漫步数理统计十九——独立随机变量

X,Y 表示连续型随机变量,其联合pdf为 f(x1,x2) ,边缘概率密度分别为 f1(x1),f2(x2) ,与条件pdf f2|1(x2|x1) 定义一样,我们可以将联合pdf f(x1,x2) 写成

f(x1,x2)=f2|1(x2|x1)f1(x1)

假设有一个实例,其中 f2|1(x2|x1) 不依赖于 x1 ,那么 X2 的边缘pdf为

f2(x2)=f2|1(x2|x1)f1(x1)dx1=f2|1(x2|x1)f1(x1)dx1=f2|1(x2|x1)

因此当 f2|1(x2|x1) 不依赖 x1 时,

f2(x2)=f2|1(x2|x1),f(x1,x2)=f1(x1)f2(x2)

即如果给定 X1=x1 X2 的条件分布独立于 x1 的任何假设,那么 f(x1,x2)=f1(x1)f2(x2)

同样的讨论对离散情况也成立,下面的定义中括号内对应离散情况。

1 随机变量 X1,X2 有联合pdf f(x1,x2) (联合pmf p(x1,x2) ,边缘pdfs(pmfs)分别为 f1(x1)(p1(x1)),f2(x2)(p2(x2)) ,当且仅当 f(x1,x2)f1(x1)f2(x2)(p(x1,x2)p1(x1)p2(x2)) 时,我们称随机变量 X1,X2 是独立的,对于不是独立的随机变量我们称为互相依赖。

1 对于前面的定义这里给出两点批注。首先,两个正函数 f1(x1)f2(x2) 的乘积是一个函数,在乘积空间上它是正的。即如果 f1(x1),f2(x2) 分别只在空间 S1,S2 上是正的,那么 f1(x1),f2(x2) 只在乘积空间 S={(x1,x2):x1S1,x2S2} 上是正的。例如,如果 S1={x1:0<x1<1},S2={x2:0<x2<3} ,那么 S={(x1,x2):0<x1<1,0<x2<3} 。第二个批注是关于恒等式,定义1中的恒等式解释如下,存在点 (x1,x2)S 使得 f(x1,x2)f1(x1)f2(x2) ,然而,如果 A 是这种点的集合,那么P(A)=0。随后的定理以及泛化中,非负函数的乘积与恒等式应该用同样的方式解释。

1 X1,X2 的联合pdf为

f(x1,x2)={x1+x200<x1<1,0<x2<1elsewhere

我们将说明 X1,X2 是相关的。这里边缘概率密度为

f1(x1)={f(x1,x2)dx2=10(x1+x2)dx2=x1+1200<x1<1elsewhere

以及

f2(x2)={f(x1,x2)dx1=10(x1+x2)dx1=x2+1200<x2<1elsewhere

因为 f(x1,x2)f1(x1)f2(x2) ,所以随机变量 X1,X2 是相关的。

下面的定理说明在不计算变换概率密度函数的情况下,也能判断随机变量的独立性。

1 X1,X2 的支撑分别是 S1,S2 ,联合pdf为 f(x1,x2) ,那么当且仅当 f(x1,x2) 可以写成 x1 的非负函数与 x2 非负函数的乘积时,即

f(x1,x2)g(x1)h(x)2)

他们是独立的,其中 g(x1)geq0,x1S1 ,其他地方为零, h(x2)>0,x2S2 ,其他地方为零。

如果 X1,X2 是独立的,那么 f(x1,x2)f1(x1)f2(x2) ,其中 f1(x1),f2(x2) X1,X2 的边缘概率密度函数,因此条件 f(x1,x2)g(x1)h(x2) 满足。

反过来,如果 f(x1,x2)g(x1)h(x2) ,那么对于连续性随机变量,我们有

f1(x1)=g(x1)h(x2)dx2=g(x1)h(x2)dx2=c1g(x1)

以及
f2(x2)=g(x1)h(x2)dx1=h(x2)g(x1)dx1=c2h(x2)

其中 c1,c2 是常数,不是 x1 x2 的函数。而且 c1c2=1 ,因为
1=g(x1)h(x2)dx1dx2=[g(x1)dx1][h(x2)dx2]=c1c2

这些结果说明

f(x1,x2)g(x1)h(x2)c1g(x1)c2h(x2)f1(x1)f1(x2)

从而 X1,X2 是独立的。 ||

这个定理对离散情况也成立,只需要将联合pdf替换为联合pmf。

如果考虑例1,其联合pdf为

f(x1,x2)={x1+x200<x1<1,0<x2<1elsewhere

无法写成 x1 的非负函数与 x2 非负函数的乘积,所以 X1,X2 是相关的。

2 令随机变量 X1,X2 的pdf为 f(x1,x2)=8x1x2,0<x1<x2<1 ,其他地方为零。 8x1x2 可能说明 X1,X2 是独立的,然而如果考虑空间 S={(x1,x2):0<x1<x2<1} ,可以看出它不是一个乘积空间。显然如果 X1,X2 正概率密度空间的边界既不是水平轴也不是垂直轴的话,那么他们是相关的。

除了pdf(pmf)外,我们还可以用累积分布函数来说明独立性,下面定理给出了等价性。

2 (X1,X2) 的联合cdf为 F(x1,x2) X1,X2 的边缘cdf分别为 F1(x1),F2(x2) ,那么 X1,X2 是独立的当且仅当对所有的 (x1,x2)R2

F(x1,x2)=F1(x1)F2(x2)

我们给出连续情况的证明,假设上式成立,那么混合二阶导为

2x1x2F(x1,x2)=f1(x1)f2(x2)

因此 X1,X2 是独立的。反过来,假设 X1,X2 是独立的,那么根据联合cdf的定义

F(x1,x2)=x1x2f1(w1)f2(w2)dw2dw1=x1f1(w1)dw1x2f2(w2)dw2=F1(x1)F2(x2)

因此满足定理中的条件。 ||

接下来我们给出一个定理,它简化了设计独立变量的概率计算。

3 随机变量 X1,X2 是独立的随机变量,当且仅当对于每个 a<b,c<d ,其中 a,b,c,d 是常数,下面的条件成立

P(a<X1b,c<X2d)=P(a<X1b)P(c<X2d)

如果 X1,X2 是独立的,那么上面的定理说明

P(a<X1b,c<X2d)=F(b,d)F(a,d)F(b,c)+F(a,c)=F1(b)F2(d)F1(a)F2(d)F1(b)F2(c)+F1(a)F2(c)=[F1(b)F1(a)][F2(d)F2(c)]

右边就是定理中表达式的右边。反过来,如果定理中的条件成立,这就意味着 (X1,X2) 的联合cdf可以分成边缘cdf的乘积,根据定理2可知这就意味着 X1,X2 是独立的。 ||

3 定理3中条件需要独立成立才行。例如考虑例1中的相关随机变量 X1,X2 ,对于这些随机变量我们有

P(0<X1<12,0<X2<12)=1/201/20(x1+x2)dx1dx2=18


P(0<X1<12)=1/20(x1+12)dx1=38P(0<X2<12)=1/20(x2+12)dx2=38

因此定理中的条件不成立。

当随机变量独立时,不仅概率计算变得简单,许多期望,包含矩生成函数,也变得简单。下面定理中的结论非常有用。

4 假设 X1,X2 是独立的且 E(u(X1)),E(v(X2)) 存在,那么

E[u(X1)v(X2)]=E[u(X1)]E[v(X2)]

我们给出连续情况的证明。 X1,X2 的独立性说明 X1,X2 的联合pdf为 f1(x1)f2(x2) ,因此根据期望的定义我们有

E[u(X1)v(X2)]=u(x1)v(x2)f1(x1)f2(x2)dx1dx2=[u(x1)f1(x1)dx1][v(x2)f2(x2)dx2]=E[u(X1)]E[v(X2)]

得证。 ||

4 X,Y 是两个独立的随机变量,其均值与方差分别为 μ1,μ2,σ21,σ22 。我们将说明 X,Y 的独立性意味着 X,Y 的相关系数为零。这是因为 X,Y 的协方差为

E[(Xμ1)(Yμ2)]=E(Xμ1)E(Yμ2)=0

接下来我们证明一个关于独立随机变量非常有用的定理,这个定理的证明依赖于之前mgf的一个性质,当它存在时,它唯一的确定一个概率分布。

5 假设随机变量 X1X2 的联合mgf M(t1,t2) 存在,那么 X1,X2 独立,当且仅当

M(t1,t2)=M(t1,0)M(0,t2)

即联合mgf可以分解成边缘mgf的乘积。

如果 X1,X2 是独立的,那么

M(t1,t2)=E(et1X1+t2X2)=E(et1X1et2X2)=E(et1X1)E(et2X2)=M(t1,0)M(0,t2)

因此 X1,X2 的独立性意味着联合分布的mgf可以分解为两个边缘分布的矩生成函数的乘积。

接下来假设 X1,X2 联合分布的mgf为 M(t1,t2)=M(t1,0)M(0,t2) ,接下来 X1 有唯一的mgf,对于连续情况为

M(t1,0)=et1x1f1(x1)dx1

同样的, X2 唯一的mgf为

M(0,t2)=et2x2f2(x2)dx2

因此我们有

M(t1,0)M(0,t2)=[et1x1f1(x1)dx1][et2x2f2(x2)dx2]=et1x1+t2x2f1(x1)f2(x2)dx1dx2

因为 M(t1,t2)=M(t1,0)M(0,t2) ;所以

M(t1,t2)=et1x1+t2x2f1(x1)f2(x2)dx1dx2

但是 M(t1,t2) X1,X2 的mgf,因此

M(t1,t2)=et1x1+t2x2f(x1,x2)dx1dx2

mgf的唯一性说明概率分布是相同的,因此

f(x1,x2)f1(x1)f2(x2)

即如果 M(t1,t2)=M(t1,0)M(0,t2) ,那么 X1,X2 是独立的。对于离散情况,只需要将积分符号换成求和即可。 ||

5 (X,Y) 是一对随机变量,其联合pdf为

f(x,y)={ey00<x<y<elsewhere

(X,Y) 的mgf为

M(t1,t2)=0xexp(t1x+t2yy)dydx=1(1t1t2)(1t2)

假设 t1+t2<1,t2<1 。因为 M(t1,t2)M(t1,0)M(0,t2) ,所以随机变量不是独立的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值