NLP系列(2)_用朴素贝叶斯进行文本分类(上)

				版权声明:本文为博主原创文章,未经博主允许不得转载。					https://blog.csdn.net/longxinchen_ml/article/details/50597149				</div>
							<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
							            <div id="content_views" class="markdown_views prism-atom-one-dark">
						<!-- flowchart 箭头图标 勿删 -->
						<svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg>
						<p>作者:<a href="http://blog.csdn.net/longxinchen_ml?viewmode=contents" rel="nofollow" target="_blank">龙心尘</a>  &amp;&amp; <a href="http://blog.csdn.net/han_xiaoyang?viewmode=contents" rel="nofollow" target="_blank">寒小阳</a></p>

时间:2016年1月。

出处:

http://blog.csdn.net/longxinchen_ml/article/details/50597149

http://blog.csdn.net/han_xiaoyang/article/details/50616559

声明:版权所有,转载请联系作者并注明出处

##1. 引言

贝叶斯方法是一个历史悠久,有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来。因此,学习贝叶斯方法,是研究自然语言处理问题的一个非常好的切入口。

##2. 贝叶斯公式

贝叶斯公式就一行:

$P(Y|X)=\frac{P(X|Y)P(Y)}{P(X)} $

而它其实是由以下的联合概率公式推导出来:

$P(Y,X) = P(Y|X)P(X)=P(X|Y)P(Y) $

其中 P ( Y ) P ( Y ) P ( Y ) P(Y)P(Y) P(Y) P(Y)P(Y)P(Y)P(,,,,,,,,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值