版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/longxinchen_ml/article/details/50597149 </div>
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
<div id="content_views" class="markdown_views prism-atom-one-dark">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg>
<p>作者:<a href="http://blog.csdn.net/longxinchen_ml?viewmode=contents" rel="nofollow" target="_blank">龙心尘</a> && <a href="http://blog.csdn.net/han_xiaoyang?viewmode=contents" rel="nofollow" target="_blank">寒小阳</a></p>
时间:2016年1月。
出处:
http://blog.csdn.net/longxinchen_ml/article/details/50597149
http://blog.csdn.net/han_xiaoyang/article/details/50616559
声明:版权所有,转载请联系作者并注明出处
##1. 引言
贝叶斯方法是一个历史悠久,有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来。因此,学习贝叶斯方法,是研究自然语言处理问题的一个非常好的切入口。
##2. 贝叶斯公式
贝叶斯公式就一行:
$P(Y|X)=\frac{P(X|Y)P(Y)}{P(X)} $
而它其实是由以下的联合概率公式推导出来:
$P(Y,X) = P(Y|X)P(X)=P(X|Y)P(Y) $
其中 P ( Y ) P ( Y ) P ( Y ) P(Y)P(Y) P(Y) P(Y)P(Y)P(Y)P((“我”,“司”,“可”,“办理”,“正规发票”,“保真”,“增值税”,“发票”,“点数”,