监督学习(2)|本质是分类的“逻辑回归”

本文介绍了逻辑回归如何从线性回归过渡到处理分类问题,特别是二分类任务。通过逻辑函数(如Sigmoid)将线性模型的输出映射到[0,1]概率区间。讨论了理想的最优模型,包括概率预测和损失函数,尤其是交叉熵损失函数,它是优化模型参数的关键。此外,还提到了逻辑回归在多分类问题上的应用及其与线性回归的相似性和差异。" 111485778,10326429,C# 数据结构:顺序队列与循环队列详解,"['C#编程', '数据结构', '队列', '算法']
摘要由CSDN通过智能技术生成

1. 引言

机器学习,绕不开预测问题,预测绕不开回归和分类。本篇介绍最常用的二分类算法:逻辑回归(Logistics Regression),当然随着算法的发展,它也可用于多分类问题。每一个算法都是许许多多数学家的努力铸就,理论篇希望自己可以尽量将算法发展过程叙述的平滑一些,可以即保留理论基础,又让读者感觉舒服。下面,就让我们一起来领教一下这处理问题的伟大逻辑。

2. 回归到分类的过渡

逻辑回归,顾名思义,分为两部分:逻辑和回归。
首先让我们回忆一下上一篇线性回归的内容。
我们希望透过样本得到数据背后的本质映射关系 y = f ( x 1 , x 2 , . . . , x m ) y=f(x_{1},x_{2},...,x_{m}) y=f(x1,x2,...,xm) 。为了简洁,我们假设这种关系是线性的 y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β m x m y=\beta_{0}+ \beta_{1}x_{1}+\beta_{2}x_{2}+...+\beta_{m}x_{m} y=β0+β1x1+β2x2+...+βmxm 。然后催生了线性回归算法的配套理论。
但是,考虑这样一个问题,当因变量不是连续变量,而是分类变量,比如大或者小,黑或者白时,线性回归模型又应该如何应用?数学的魅力在于将现象数字化,或者称为模型化。所以处理这个问题的第一步,我们需要用数学来表示大或者小,黑或者白。
考虑类别之间相对的关系,我们可以用概率来表示这个问题,例如大的概率大于小的概率,我们将预测为大。那么我们知道线性回归的因变量的数值位于 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 之间。如果我们再定义一个映射关系,将 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 之间的数值映射成概率值,即 [ 0 , 1 ] [0,1] [0,1] 之间,就可以解决线性回归到分类问题的过渡。

3. 什么是逻辑

下面我们介绍几个可以完成上述映射的函数,

3.1 sigmod

S ( x ) = 1 1 + e − x (1) S(x)=\frac{1}{1+e^{-x}}\tag{1} S(x)=1+ex1(1)
Sigmod

公式(1)称为逻辑函数(或者称为Sigmoid、S型函数),其将 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 之间的数值映射到 [ 0 , + 1 ] [0,+1] [0,+1] 之间,也是逻辑回归中使用的映射形式,即线性回归接逻辑函数映射得逻辑回归模型;

3.2 arctan

x = t a n ( y ) , y = a r c t a n ( x ) (2) x=tan(y),y=arctan(x)\tag{2} x=tan(y),y=arctan(x)(2)
arctan

3.3 tanh

t a n h ( x ) = s i n h ( x ) c o s h ( x ) = e x − e − x e x + e − x (3) tanh(x)=\frac{sinh(x)}{cosh(x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\tag{3} tanh(x)=cosh(x)sinh(x)=ex+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZ邀你聊数科

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值