Single-Phase PLL(SOGI)-Part01

简介

本文主要讲解了基于SOGI(二阶广义积分器)的单相PLL技术。这一篇重点在于从传函的角度进行分析,并重点关注正交系统的产生。有关数字离散化以及对单相电网的锁相内容将在后续篇幅进行分析。

PLL介绍

对于并网逆变器以及整流器,对电网电压进行锁相是至关重要的一部分技术。通过锁相,可以获得输入网侧电压的频率,相位,频率等信息。

基于SOGI的PLL锁相技术存在以下几个有点:

  1. 实现简单,(相比与其他的PLL实现方法)
  2. the generated orthogonal system is filtered without delay by the same structure due to its resonance at the fundamental frequency, 所产生的正交系统由于是在基频处的共振可以被无延迟的滤波
  3. 产生相位差90度的正弦波,不受频率的影响

Fig.1 PLL的通用结构

常规的正交系统产生的方法有以下几种:

  1. 一个传输延迟块,负责引入相对于输入信号(电网电压)的基本频率为90度的相移。
  2. 使用Hilbert 变换,但是该方法较为复杂
  3. Park 反变换

以上三种方法均有以下几个共同的缺点:

  1. 对频率依赖性较大
  2. 算法复杂
  3. 存在非线性特性
  4. 没有滤波的效果,对谐波处理能力弱

SOGI

TI-SOGI_PLLSingle-Order Generalized Integrator Phase-Locked Loop,一阶广义积分器锁相环)是一种常用于电力电子系统中的控制算法,用于实现信号的采样、滤波和精确的同步。 TI-SOGI_PLL的环路滤波数学模型基于广义积分器和锁相环的原理。广义积分器用于提供高精度的积分功能,可以实现快速和精确的滤波操作。锁相环用于同步输入信号,控制系统的频率与输入信号的频率保持一致。 TI-SOGI_PLL的数学模型可以用以下公式表示: $$ \begin{align*} \dot{v_{\alpha}} &= v_{\beta} \cdot \omega \\ \dot{v_{\beta}} &= -v_{\alpha} \cdot \omega + \frac{v_{\beta_{ref}} - v_{\beta}}{T_{iv}} \\ \dot{\omega} &= \frac{v_{\alpha} \cdot v_{\beta}}{2} \cdot \omega + \frac{\omega_{ref} - \omega}{T_{i\omega}} \end{align*} $$ 其中,$v_{\alpha}$和$v_{\beta}$是信号的$\alpha$和$\beta$轴组分,$\omega$是锁相环的相角频率,$v_{\beta_{ref}}$和$\omega_{ref}$是参考信号的$\beta$轴组分和相角频率,$T_{iv}$和$T_{i\omega}$是积分时间常数。根据这个数学模型,可以设计出相应的控制算法实现TI-SOGI_PLL的功能。 TI-SOGI_PLL通过对输入信号进行采样、滤波和同步,能够提供高精度的控制信号,广泛应用于电力电子系统中的功率因数校正、谐波抑制和无功功率控制等方面。这种控制算法具有快速响应、高抗干扰和稳定性好的特点,对于提高电力电子系统的性能和可靠性具有重要意义。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值