linux 查看cuda、cudnn版本

目录

查看cuda版本

查看cudnn版本

tensorflow与cuda,cudnn的版本匹配


查看cuda版本

nvcc --version
若该指令无法执行,先安装sudo apt install nvidia-cuda-toolkit
或者

cat /usr/local/cuda/version.txt

查看cudnn版本

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

或者

dpkg -l | grep cudnn  #查看已安装版本
sudo dpkg -r libcudnn7 # 删除版本

卸载CUDA

 

 

卸载cudnn

因为nvcc -V 查到的cuda版本是9.1   dpkg查到的cudnn是7+cuda9.0  

搞不懂 运行darknet不会报错,但是gluoncv跑不通 所以重装一下cudnn  看看是不是这个原因

dpkg -l | grep cudnn  #查看已安装
----------------------------------------------------
libcudnn7       7.4.1.5-1+cuda9.0 amd64 ....
libcudnn7-dev   7.4.1.5-1+cuda9.0 amd64 ....
----------------------------------------------------
sudo dpkg -r libcudnn7  #卸载已安装
---------------------------------------------------
报错:
dpkg:依赖问题阻止了卸载libcudnn7的操作
libcudnn7-dev依赖于libcudnn7(=7.4.1.5-1+cuda9.0)
解决办法:
先卸载libcudnn7-dev
---------------------------------------------------
sudo dpkg -r libcudnn7-dev
sudo dpkg -r libcudnn7
dpkg -l | grep cudnn # 无显示 说明卸载成功

安装cudnn  需要nvidia账号

https://developer.nvidia.com/rdp/cudnn-archive  根据cuda版本选择下载 这里是cuda9.1 选择cudnn7.1.3

选择cuDNN v7.1.3 Runtime Library for Ubuntu16.04[Deb] 下载

安装指令: 安装成功即可

sudo dpkg -i libcudnn7_7.1.3.16-1+cuda9.1_amd64.deb

nvidia-smi显示的 CUDA Version: 10.0 只是说该驱动最大支持的CUDA Toolkit版本号是10.0,而不是您目前安装的CUDA版本是10.0.查看目前CUDA版本号的命令是$ nvcc -V

Python第三方包安装出现 file is not a zip file错误
使用pip install Python第三方包名.whl ,安装Python第三方包时,例如安装numpy-1.14.5+mkl-cp35-cp35m-win_amd64.whl,出现 file is not a zip file错误,原因是下载的过程中包出现了丢失,重新下载即可。

 

tensorflow与cuda,cudnn的版本匹配

https://blog.csdn.net/omodao1/article/details/83241074

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值