目录
查看cuda版本
nvcc --version
若该指令无法执行,先安装sudo apt install nvidia-cuda-toolkit
或者
cat /usr/local/cuda/version.txt
查看cudnn版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
或者
dpkg -l | grep cudnn #查看已安装版本
sudo dpkg -r libcudnn7 # 删除版本
卸载CUDA
卸载cudnn
因为nvcc -V 查到的cuda版本是9.1 dpkg查到的cudnn是7+cuda9.0
搞不懂 运行darknet不会报错,但是gluoncv跑不通 所以重装一下cudnn 看看是不是这个原因
dpkg -l | grep cudnn #查看已安装
----------------------------------------------------
libcudnn7 7.4.1.5-1+cuda9.0 amd64 ....
libcudnn7-dev 7.4.1.5-1+cuda9.0 amd64 ....
----------------------------------------------------
sudo dpkg -r libcudnn7 #卸载已安装
---------------------------------------------------
报错:
dpkg:依赖问题阻止了卸载libcudnn7的操作
libcudnn7-dev依赖于libcudnn7(=7.4.1.5-1+cuda9.0)
解决办法:
先卸载libcudnn7-dev
---------------------------------------------------
sudo dpkg -r libcudnn7-dev
sudo dpkg -r libcudnn7
dpkg -l | grep cudnn # 无显示 说明卸载成功
安装cudnn 需要nvidia账号
https://developer.nvidia.com/rdp/cudnn-archive 根据cuda版本选择下载 这里是cuda9.1 选择cudnn7.1.3
选择cuDNN v7.1.3 Runtime Library for Ubuntu16.04[Deb] 下载
安装指令: 安装成功即可
sudo dpkg -i libcudnn7_7.1.3.16-1+cuda9.1_amd64.deb
nvidia-smi显示的 CUDA Version: 10.0 只是说该驱动最大支持的CUDA Toolkit版本号是10.0,而不是您目前安装的CUDA版本是10.0.查看目前CUDA版本号的命令是$ nvcc -V
Python第三方包安装出现 file is not a zip file错误
使用pip install Python第三方包名.whl ,安装Python第三方包时,例如安装numpy-1.14.5+mkl-cp35-cp35m-win_amd64.whl,出现 file is not a zip file错误,原因是下载的过程中包出现了丢失,重新下载即可。
tensorflow与cuda,cudnn的版本匹配
https://blog.csdn.net/omodao1/article/details/83241074