数据正则化方法之 concrete dropblock

类内间距的存在,让现有的WSOD算法经常错误地将具有区分度的部分目标检出,而不是检出完整目标。一个自然的解决方法是让网络聚焦于整体内容,这可以通过丢弃图片中最具区分度的部分实现。所以,spatial dropout是一个合适的选择。

朴素的spatial dropout具有检测的局限性,因为随着目标在图片中的位置与大小的不同,目标具有区分度部分也不同。一个更结构化的dropblock被提出,其ROI特征图的空间点被随即采样为斑点中心(blob centers),特征图中所有通道的围绕着中心HxH大小的方形区域被丢弃。最后,为被丢弃区域中所有ROI的特征值被一个因子重新量化,这样推理过程中没有区被被丢弃的时候,也不需要进行归一化操作了。

 

DropBlock是一个无参数的正则化技巧。它可以提升模型的鲁棒性,缓和区域性支配,但是它基本上对所有的区域都一视同仁。我们考虑以对抗的对支配区域以更高频率地丢弃。为此,我们提出了concrete dropblock:一个数据驱动的有参数的dropblock方法,其通过端到端的学习来对最相关的区域进行舍弃,如图三所示。给定一个输入图像,在ROI池化之前,每一个区域的特征图会被上层计算。 H是ROI池化输出的维度。我们之后将输入到卷积参差块中来生成概率图,其中theta归入米咯性的训练参数中。的每一个元素都被当作是独立的伯努力变量,并且这个概率图通过空间 Gumbel-Softmax算法转为硬掩模(hard mask)。这个操作是采样的近似可微。为了避免特殊情况(如整个区域都被丢弃或者某个区域持续被丢弃)我们引入一个阈值tao比如。这保证计算出了掩模是稀疏的。我们遵循dropblock来最终生成结构化的掩模并且对特征进行归一化。在训练中,我们联合优化原有的网络参数w还有残差块参数theta,下面是使用的最小化目标函数:

通过最小化关于concrete dropclock的原始损失,concrete dropblock会学习到将目标最具辨别性的部分丢弃,因为这是增加训练损失最简单的方法。我们发现这个策略可以提升性能,尤其是对于非刚性的目标类别,这种类别常常有非常大的类内间距。

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值