dropout
-
dropout方法综述
一文看尽dropout前世今生 -
其中,dropConnect和Monte-Carlo Dropout和高斯分布有关系
-
dropConnect
DropConnect的inference部分和Dropout不同,在Dropout网络中进行inference时,是将所有的权重W都scale一个系数p(作者证明这种近似在某些场合是有问题的,具体见其paper)。而在对DropConnect进行推理时,采用的是对每个输入(每个隐含层节点连接有多个输入)的权重进行高斯分布的采样。 -
Monte-Carlo Dropout
MC dropout 的 MC 体现在我们需要对同一个输入进行多次前向传播过程,这样在 dropout 的加持下可以得到“不同网络结构”的输出,将这些输出进行平均和统计方差,即可得到模型的预测结果及 uncertainty。而且,这个过程是可以并行的,所以在时间上可以等于进行一次前向传播。 -
concrete dropout(从论文《Siamese Capsule Networks》中发现的)
https://github.com/yaringal/ConcreteDropout