一些领域

本文深入探讨了dropout技术,包括dropConnect的高斯分布采样特性与Dropout的推理区别,以及Monte-Carlo Dropout如何通过多次前向传播获取模型不确定性。同时,介绍了半监督学习的总结,涵盖长文综述和深度学习中的类协同训练与一致性正则化方法。
摘要由CSDN通过智能技术生成

dropout

  • dropout方法综述
    一文看尽dropout前世今生

  • 其中,dropConnect和Monte-Carlo Dropout和高斯分布有关系

  • dropConnect
    DropConnect的inference部分和Dropout不同,在Dropout网络中进行inference时,是将所有的权重W都scale一个系数p(作者证明这种近似在某些场合是有问题的,具体见其paper)。而在对DropConnect进行推理时,采用的是对每个输入(每个隐含层节点连接有多个输入)的权重进行高斯分布的采样。

  • Monte-Carlo Dropout
    MC dropout 的 MC 体现在我们需要对同一个输入进行多次前向传播过程,这样在 dropout 的加持下可以得到“不同网络结构”的输出,将这些输出进行平均和统计方差,即可得到模型的预测结果及 uncertainty。而且,这个过程是可以并行的,所以在时间上可以等于进行一次前向传播。

  • concrete dropout(从论文《Siamese Capsule Networks》中发现的)
    https://github.com/yaringal/ConcreteDropout

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值