自我反省

一日三省吾身
以后每个月做一次反省
1.总结下时间花在哪里
2.一个月的成长
3.下个月的规划
在这里插入图片描述
2019.11
距离初始创建这篇博客已经过去了一年时间,这一年看了很多书,再次翻到这篇还是很有感触,不过个人的总结反省已经转移到了笔记,每天记录还是很重要的,工作之后每天的事情都变得琐碎,唯一记得的只是大的项目节点,当每年绩效考核仔细回想也很难想到今年各个月份都做了些什么,还是相当尴尬,但是看到日总结、月总结其实还是做了挺多的东西,善于总结带来的好处还是非常多的。

2019.3
1、及时推进,关注事情的闭环

2018.11
1.开发之前要多思考,要对项目有自己的理解,形成自己的别人推不倒的架构,而不是别人一反驳自己就心虚。
2.多动手写,多记录
3.不要害怕问题,解决的问题就一定不会是问题,没有解决的问题很有可能会变成麻烦。
4.不要相信反馈的所有问题,要多去了解信息,去推断,防止被误导。对自己的东西要保持自信。

### 大型语言模型中的自我反思创新点 #### 自我监督学习与概率深度学习 在大型语言模型(LLM)领域,自我监督学习成为一种重要的技术手段。通过利用未标注的数据集来预训练模型,使得这些模型能够在各种下游任务上表现出色。此外,在自省方面的一个重要进展是引入了变分自动编码器(VAEs),这类方法允许模型不仅能够生成数据样本,还能理解潜在空间内的结构化表示[^2]。 #### 查询重写机制 对于检索增强型的大规模语言处理系统而言,直接采用用户的初始请求可能并不是最优解法;因此出现了针对查询语句改写的方案。这种做法旨在优化输入给定的信息形式以便更好地匹配内部索引或是外部搜索引擎的要求,从而提高最终返回结果的质量和准确性[^1]。 #### 创新的架构设计 为了使大规模的语言建模更加高效并具备更强泛化能力,研究者们探索出了新颖的网络拓扑以及相应的损失函数定义方式。例如,某些工作提出了基于图神经网络(GNN)的方法论框架用于捕捉实体间复杂关系模式;还有些则聚焦于如何构建易于推理计算的概率图形模型(SPNs)[^3]。 #### 实践案例 - Google's Self-Discover Pack 具体到实际应用层面,像谷歌推出的Self-Discover工具包就很好地体现了上述理论成果的应用价值。它提供了一套完整的解决方案让用户可以轻松部署并测试最新的研究成果,包括但不限于特定版本的基础权重文件下载、API接口封装等功能特性[^4]。 ```python import llama_index as li from llama_index.llms.ollama import Ollama # 安装必要的库 !pip install llama-index !pip install llama-index-llms-ollama # 初始化Ollama实例 llm = Ollama( model="llama2", base_url="http://192.168.xxx.xxx:11434", request_timeout=30.0 ) # 下载SelfDiscoverPack li.cli.download_llamapack('SelfDiscoverPack', './self_discover_pack') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值