SFU
SFU, Simon Fraser University, Burnaby, Canada
方法:Random forest + relative distance map + U-Net
- Step 1:层分割;
- Step 2:生成相对距离图与原始图像连接(变为 2 通道)作为 FCN 的输入,网络检测可能存在目标的区域;
- Step 3:从候选区域提取特征,训练随机森林分类器以去掉假阳性区域。
网络:
结果:mean Dice 0.7317
UMN
UMN, University of Minnesota, Minneapolis, US
方法:图最短路径算法 + CNN
- Step 1:采用图最短路径法分割 ILM 和 RPE 层;
- Step 2:将层间区域输入 CNN
- Step 3:基于层分割和层关注的聚类
结果:mean Dice:76.44% / 92.25% / 82.14%
MABIC
MABIC, National Institute for Mathematical Sciences, Daejeon, Korea
方法:two step neural network,前者用于检测和分割(使用 U-Net + classification layer),后者用于提高前者的鲁棒性。
网络:
- 网络一:U-Net 结构,在 encoder 和 decoder 之间添加 FC layer 做分类任务
- 网络二:U-Net 结构,将网络一的分割结果和原图作为输入,分别为三个类别(IRF、SRF、PED)训练网络
结果:
IRF | SRF | PDE | |
---|---|---|---|
mean Dice | 0.92/0.80/0.86 | 0.93/0.92/0.93 | 0.89/0.91/0.94 |
RMIT
RMIT, RMIT University, Melbourne, Australia
方法:Adversarial network + U-Net,使用对抗网络对图像区域之间的高阶关系进行编码
代码:https://github.com/RuwanT/retouch
网络:
- f j c ( x ( i ) ; θ s ) f_{jc}(x^{(i)}; \theta_s) fjc(x(i);θs):预测图像 x ( i ) x^{(i)} x(i) 中每个 voxel 的概率,图像 x x x 属于某个特定类别
-
g
c
(
x
(
i
)
;
θ
g
)
g_c(x^{(i)}; \theta_g)
gc(x(i);θg):预测图像
x
(
i
)
x^{(i)}
x(i) 中包含 c 类别的概率
结果:Dice 0.75
RetinAI
RetinAI, RetinAI Medical GmbH and University of Bern, Switzerland
方法:Branch Residual U-Net (BRUNet),dilated residual blocks + U-Net
网络:将原始图像和分层分割输入到分割网络 BRUNet 和分类器中,再将 BRUNet 的分割结果作为分类器的输入,得到最终的分割结果。
结果:
IRF | SRF | PDE | |
---|---|---|---|
mean Dice | 0.51±0.36 | 0.58±0.44 | 0.73±0.38 |
Helios
Helios, IIIT Hyderabad, Hyderabad, India
方法:Fully automated Generalized Motion Pattern(GMP) based segmentation method using a cascade of fully convolutional networks,基于 Generalized Motion Pattern (GMP) 的特征提取,利用 cascade FCN 形成一条联合分割检测流水线
三个阶段组成:
- Stage 1:数据预处理(Resize,提取 ROI,去噪),处理结果用于生成 GMP 图像。GMP:对每个 slice 图像进行计算产生 N 个结果图,N 个图通过合并函数 f f f 进行映射形成 GMP,网络学习最优的合并函数 f f f。
- Stage 2:全卷积网络 用于检测和分割,训练图像和 GMP map 作为 Cascaded FCN 输入。
- Stage 3:后处理,去除假阳性(具有很少联通区域的结果)
网络:类似于 U-Net 的级联 CNN
结果:
IRF | SRF | PDE | |
---|---|---|---|
mean Dice | 0.61 | 0.70 | 0.73 |
mean AUC | 0.85 | 0.84 | 0.87 |
UCF
UCF, University of Central Florida, Orlando, US
方法:ResNet + 数据增强(myopic warping + rotation)+ 后处理(graph cut)
网络:
网络基本单元:
网络结构:
结果:
IRF | SRF | PDE | |
---|---|---|---|
mean Dice | 0:522 | 0:682 | 0:612 |
NJUST
NJUST, Nanjing University of Science & Technology, China
方法:融合 Faster R-CNN,region growing 做分割任务。第一阶段,Faster R-CNN 做 IRF 的分割;第二阶段,Faster R-CNN 检测体素作为 seed 进行 3D 区域生长做 SRF 的分割;第三阶段,RPE layer 定位 PED。
结果:
IRF | SRF | PDE | |
---|---|---|---|
mean Dice | 0.99 | 0.99 | 0.99 |