RETOUCH数据集排行榜

本文综述了全球各大研究机构在眼科影像智能分析领域的最新进展,包括Simon Fraser University的随机森林结合U-Net方法,University of Minnesota的图最短路径算法与CNN结合方案,National Institute for Mathematical Sciences的双阶段神经网络,以及RMIT University的对抗网络加U-Net等,这些技术在眼底图像的层分割、病变检测与分类等方面取得了显著成果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SFU

SFU, Simon Fraser University, Burnaby, Canada

方法:Random forest + relative distance map + U-Net

  • Step 1:层分割;
  • Step 2:生成相对距离图与原始图像连接(变为 2 通道)作为 FCN 的输入,网络检测可能存在目标的区域;
  • Step 3:从候选区域提取特征,训练随机森林分类器以去掉假阳性区域。

网络
在这里插入图片描述
结果:mean Dice 0.7317

UMN

UMN, University of Minnesota, Minneapolis, US

方法:图最短路径算法 + CNN

  • Step 1:采用图最短路径法分割 ILM 和 RPE 层;
  • Step 2:将层间区域输入 CNN
  • Step 3:基于层分割和层关注的聚类

结果:mean Dice:76.44% / 92.25% / 82.14%

MABIC

MABIC, National Institute for Mathematical Sciences, Daejeon, Korea

方法:two step neural network,前者用于检测和分割(使用 U-Net + classification layer),后者用于提高前者的鲁棒性。

网络

  • 网络一:U-Net 结构,在 encoder 和 decoder 之间添加 FC layer 做分类任务
  • 网络二:U-Net 结构,将网络一的分割结果和原图作为输入,分别为三个类别(IRF、SRF、PED)训练网络

在这里插入图片描述
结果

IRFSRFPDE
mean Dice0.92/0.80/0.860.93/0.92/0.930.89/0.91/0.94

RMIT

RMIT, RMIT University, Melbourne, Australia

方法:Adversarial network + U-Net,使用对抗网络对图像区域之间的高阶关系进行编码

代码:https://github.com/RuwanT/retouch

网络

  • f j c ( x ( i ) ; θ s ) f_{jc}(x^{(i)}; \theta_s) fjc(x(i);θs):预测图像 x ( i ) x^{(i)} x(i) 中每个 voxel 的概率,图像 x x x 属于某个特定类别
  • g c ( x ( i ) ; θ g ) g_c(x^{(i)}; \theta_g) gc(x(i);θg):预测图像 x ( i ) x^{(i)} x(i) 中包含 c 类别的概率
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

结果:Dice 0.75

RetinAI

RetinAI, RetinAI Medical GmbH and University of Bern, Switzerland

方法:Branch Residual U-Net (BRUNet),dilated residual blocks + U-Net

网络:将原始图像和分层分割输入到分割网络 BRUNet 和分类器中,再将 BRUNet 的分割结果作为分类器的输入,得到最终的分割结果。
在这里插入图片描述
结果

IRFSRFPDE
mean Dice0.51±0.360.58±0.440.73±0.38

Helios

Helios, IIIT Hyderabad, Hyderabad, India

方法:Fully automated Generalized Motion Pattern(GMP) based segmentation method using a cascade of fully convolutional networks,基于 Generalized Motion Pattern (GMP) 的特征提取,利用 cascade FCN 形成一条联合分割检测流水线

三个阶段组成:

  • Stage 1:数据预处理(Resize,提取 ROI,去噪),处理结果用于生成 GMP 图像。GMP:对每个 slice 图像进行计算产生 N 个结果图,N 个图通过合并函数 f f f 进行映射形成 GMP,网络学习最优的合并函数 f f f
  • Stage 2:全卷积网络 用于检测和分割,训练图像和 GMP map 作为 Cascaded FCN 输入。
  • Stage 3:后处理,去除假阳性(具有很少联通区域的结果)
    在这里插入图片描述

网络:类似于 U-Net 的级联 CNN
在这里插入图片描述
结果

IRFSRFPDE
mean Dice0.610.700.73
mean AUC0.850.840.87

UCF

UCF, University of Central Florida, Orlando, US

方法:ResNet + 数据增强(myopic warping + rotation)+ 后处理(graph cut)

网络

网络基本单元:
在这里插入图片描述
网络结构:
在这里插入图片描述
结果

IRFSRFPDE
mean Dice0:5220:6820:612

NJUST

NJUST, Nanjing University of Science & Technology, China

方法:融合 Faster R-CNN,region growing 做分割任务。第一阶段,Faster R-CNN 做 IRF 的分割;第二阶段,Faster R-CNN 检测体素作为 seed 进行 3D 区域生长做 SRF 的分割;第三阶段,RPE layer 定位 PED。
在这里插入图片描述
结果

IRFSRFPDE
mean Dice0.990.990.99
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不吃饭就会放大招

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值