ABC 401 D - Logical Filling


原题链接

首先容易想到所o相邻的?全部都是一种可能的

所以可以对字符串先把这种?先处理一遍

接下来再想想特殊情况,因为题目保证有解

假设我们初始o的数量为cnt

那么肯定满足 c n t ≤ k cnt \leq k cntk,同时?的个数一定可以使得 c n t = k cnt=k cnt=k

简单特判若 c n t = k cnt =k cnt=k所有?肯定是.

思考若干个连续?最多能够产生几个o呢?

假设?个数为len,最多能够产生 ( l e n + 1 ) / / 2 (len+1)//2 (len+1)//2个,但是长度为奇数,最多产生的生成方式只有一种,长度为偶数则有多种最多产生方式。

那么就不难想到若是每一段连续的?都全力产出o以后,我们的o数量才能满足k

那么此时对于奇数长度的连续?来说,他的生成方式是确定的,剩余其他情况的?都是不确定。

若是不需要全力产出就能够使得 c n t = k cnt=k cnt=k那么哪一段作为不全力发挥的都是有可能的,此时?都是不确定的。

参考代码

#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
const int N = 1e6 + 10;
const int mod = 998244353;
#define endl '\n'
bool flag = false;
int cnt = 0;
#define all(x) x.begin(), x.end()
// int xx[] = { 1,0,-1,0 };
// int yy[] = { 0,1,0,-1 };
i64 qp(i64 a, i64 b)
{
    i64 res = 1;
    a %= mod;
    while (b)
    {
        if (b & 1)
            res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}
void solve()
{
    int n, k;
    cin >> n >> k;
    string s;
    cin >> s;
    for (int i = 0; i < n; i++)
    {
        if (s[i] == 'o')
        {
            if (i)
                s[i - 1] = '.';
            if (i + 1 < n)
                s[i + 1] = '.';
        }
    }
    bool flag = true;
    int sum = count(all(s), 'o');
    if (sum == k)
    {
        for (int i = 0; i < n; i++)
            if (s[i] == '?')
                s[i] = '.';
    }
    //.???.
    for (int i = 0; i < n; i++)
    {
        if (s[i] == '?')
        {
            int j = i;
            while (j < n && s[j] == '?')
                j++;
            sum += (j - i + 1) / 2;
            i = j;
        }
    }
    if (sum == k)
    {
        for (int i = 0; i < n; i++)
        {
            if (s[i] == '?')
            {
                int j = i;
                while (j < n && s[j] == '?')
                    j++;
                if ((j - i) % 2 != 1)
                {
                    i = j;
                    continue;
                }
                for (int k = i; k < j; k += 2)
                    s[k] = 'o';
                for (int k = i + 1; k < j; k += 2)
                    s[k] = '.';
                i = j;
            }
        }
    }
    cout << s << endl;
}
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int T = 1;
    // cin >> T;
    while (T--)
        solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值