教你利用机器学习从0到1打造量化选股策略

这篇博客详细介绍了如何利用机器学习从数据获取到回测,构建一个中期股票量化选股策略。通过tushare获取数据,进行数据处理、特征工程,选择lightGBM模型进行训练,并进行回测分析,展示了一条完整的量化投资流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇对前面部分内容的一个总结,利用机器学习从0到1开发量化选股策略。本篇文章没有代码,只是从文字角度叙述策略开发的流程。

目前有很多量化回测的平台可以供大家开发策略,但使用这些回测平台有个弊端。其弊端在于若需要构造一些复杂的策略,那些平台就无法满足我们的要求,因为1)当我们训练的策略模型比较复杂时,比如训练深度学习模型,可能需要好一点的机器,而这些机器平台可能无法提供或代价昂贵;2)平台很多东西都是封装好的,你无法添加自己想要的操作。

因此本篇文章将从0到1利用机器学习构造自己的中期股票选取的量化策略。利用机器学习构建策略的流程图如下:
在这里插入图片描述
Step 1:获取数据存入本地。
Step 2:对原始数据进行预处理及标签制作。
Step 3:特征工程:提取特征。
Step 4:选择机器学习模型并进行模型训练。
Step 5:利用训练好的模型进行回测。
Step 6:模型超参调整,重复step 4、step 5、及step 6。选择较优的超参组合。

对于模型的超参调整后文不作介绍,基本方法就是单独调整某一超参观察效果的改变情况再决定超参的设置。

1 数据获取

数据获取是进行一个机器学习项目研究中的第一个步骤。tushare提供了一个很好的数据获取接口。如下图我们可以通过tushare获取一些股票数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值